|
from typing import Dict, List, Any |
|
from transformers import CLIPModel, AutoProcessor, AutoTokenizer |
|
import torch |
|
from PIL import Image |
|
import requests |
|
|
|
|
|
class EndpointHandler: |
|
def __init__(self, path=""): |
|
self.model = CLIPModel.from_pretrained("patrickjohncyh/fashion-clip") |
|
self.processor = AutoProcessor.from_pretrained("patrickjohncyh/fashion-clip") |
|
self.tokenizer = AutoTokenizer.from_pretrained("openai/clip-vit-base-patch32") |
|
|
|
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]: |
|
parameters = data.pop("parameters", {"mode": "text"}) |
|
inputs = data.pop("inputs", data) |
|
with torch.no_grad(): |
|
if parameters["mode"] == "text": |
|
inputs = self.tokenizer(inputs, padding=True, return_tensors="pt") |
|
features = self.model.get_text_features(**inputs) |
|
|
|
if parameters["mode"] == "image": |
|
image = Image.open(requests.get(inputs, stream=True).raw) |
|
|
|
inputs = self.processor(images=image, return_tensors="pt") |
|
features = self.model.get_image_features(**inputs) |
|
|
|
return features[0].tolist() |
|
|