EVA787797 commited on
Commit
3da0e76
·
verified ·
1 Parent(s): 1e4e305

Upload 3 files

Browse files
Files changed (3) hide show
  1. app (4).py +98 -0
  2. app (5).py +109 -0
  3. app (6).py +109 -0
app (4).py ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import spaces
2
+ import gradio as gr
3
+ import torch
4
+ from PIL import Image
5
+ from diffusers import DiffusionPipeline
6
+ import random
7
+
8
+ # Initialize the base model and specific LoRA
9
+ base_model = "black-forest-labs/FLUX.1-dev"
10
+ pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=torch.bfloat16)
11
+
12
+ lora_repo = "XLabs-AI/flux-RealismLora"
13
+ trigger_word = "" # Leave trigger_word blank if not used.
14
+ pipe.load_lora_weights(lora_repo)
15
+
16
+ pipe.to("cuda")
17
+
18
+ MAX_SEED = 2**32-1
19
+
20
+ @spaces.GPU(duration=80)
21
+ def run_lora(prompt, cfg_scale, steps, randomize_seed, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)):
22
+ # Set random seed for reproducibility
23
+ if randomize_seed:
24
+ seed = random.randint(0, MAX_SEED)
25
+ generator = torch.Generator(device="cuda").manual_seed(seed)
26
+
27
+ # Update progress bar (0% saat mulai)
28
+ progress(0, "Starting image generation...")
29
+
30
+ # Generate image with progress updates
31
+ for i in range(1, steps + 1):
32
+ # Simulate the processing step (in a real scenario, you would integrate this with your image generation process)
33
+ if i % (steps // 10) == 0: # Update every 10% of the steps
34
+ progress(i / steps * 100, f"Processing step {i} of {steps}...")
35
+
36
+ # Generate image using the pipeline
37
+ image = pipe(
38
+ prompt=f"{prompt} {trigger_word}",
39
+ num_inference_steps=steps,
40
+ guidance_scale=cfg_scale,
41
+ width=width,
42
+ height=height,
43
+ generator=generator,
44
+ joint_attention_kwargs={"scale": lora_scale},
45
+ ).images[0]
46
+
47
+ # Final update (100%)
48
+ progress(100, "Completed!")
49
+
50
+ yield image, seed
51
+
52
+ # Example cached image and settings
53
+ example_image_path = "example0.webp" # Replace with the actual path to the example image
54
+ example_prompt = """A Jelita Sukawati speaker is captured mid-speech. She has long, dark brown hair that cascades over her shoulders, framing her radiant, smiling face. Her Latina features are highlighted by warm, sun-kissed skin and bright, expressive eyes. She gestures with her left hand, displaying a delicate ring on her pinky finger, as she speaks passionately.
55
+
56
+ The woman is wearing a colorful, patterned dress with a green lanyard featuring multiple badges and logos hanging around her neck. The lanyard prominently displays the "CagliostroLab" text.
57
+
58
+ Behind her, there is a blurred background with a white banner containing logos and text, indicating a professional or conference setting. The overall scene captures the energy and vibrancy of her presentation."""
59
+ example_cfg_scale = 3.2
60
+ example_steps = 32
61
+ example_width = 1152
62
+ example_height = 896
63
+ example_seed = 3981632454
64
+ example_lora_scale = 0.85
65
+
66
+ def load_example():
67
+ # Load example image from file
68
+ example_image = Image.open(example_image_path)
69
+ return example_prompt, example_cfg_scale, example_steps, False, example_seed, example_width, example_height, example_lora_scale, example_image
70
+
71
+ with gr.Blocks() as app:
72
+ gr.Markdown("# Flux RealismLora Image Generator")
73
+ with gr.Row():
74
+ with gr.Column(scale=3):
75
+ prompt = gr.TextArea(label="Prompt", placeholder="Type a prompt", lines=5)
76
+ generate_button = gr.Button("Generate")
77
+ cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=example_cfg_scale)
78
+ steps = gr.Slider(label="Steps", minimum=1, maximum=100, step=1, value=example_steps)
79
+ width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=example_width)
80
+ height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=example_height)
81
+ randomize_seed = gr.Checkbox(False, label="Randomize seed")
82
+ seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=example_seed)
83
+ lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=1, step=0.01, value=example_lora_scale)
84
+ with gr.Column(scale=1):
85
+ result = gr.Image(label="Generated Image")
86
+ gr.Markdown("Generate images using RealismLora and a text prompt.\n[[non-commercial license, Flux.1 Dev](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)]")
87
+
88
+ # Automatically load example data and image when the interface is launched
89
+ app.load(load_example, inputs=[], outputs=[prompt, cfg_scale, steps, randomize_seed, seed, width, height, lora_scale, result])
90
+
91
+ generate_button.click(
92
+ run_lora,
93
+ inputs=[prompt, cfg_scale, steps, randomize_seed, seed, width, height, lora_scale],
94
+ outputs=[result, seed]
95
+ )
96
+
97
+ app.queue()
98
+ app.launch()
app (5).py ADDED
@@ -0,0 +1,109 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import spaces
2
+ import argparse
3
+ import os
4
+ import time
5
+ from os import path
6
+ from safetensors.torch import load_file
7
+ from huggingface_hub import hf_hub_download
8
+
9
+ cache_path = path.join(path.dirname(path.abspath(__file__)), "models")
10
+ os.environ["TRANSFORMERS_CACHE"] = cache_path
11
+ os.environ["HF_HUB_CACHE"] = cache_path
12
+ os.environ["HF_HOME"] = cache_path
13
+
14
+ import gradio as gr
15
+ import torch
16
+ from diffusers import FluxPipeline
17
+
18
+ torch.backends.cuda.matmul.allow_tf32 = True
19
+
20
+ class timer:
21
+ def __init__(self, method_name="timed process"):
22
+ self.method = method_name
23
+ def __enter__(self):
24
+ self.start = time.time()
25
+ print(f"{self.method} starts")
26
+ def __exit__(self, exc_type, exc_val, exc_tb):
27
+ end = time.time()
28
+ print(f"{self.method} took {str(round(end - self.start, 2))}s")
29
+
30
+ if not path.exists(cache_path):
31
+ os.makedirs(cache_path, exist_ok=True)
32
+
33
+ pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16)
34
+ pipe.load_lora_weights(hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors"))
35
+ pipe.fuse_lora(lora_scale=0.125)
36
+ pipe.to(device="cuda", dtype=torch.bfloat16)
37
+
38
+ with gr.Blocks(theme=gr.themes.Soft()) as demo:
39
+ gr.Markdown(
40
+ """
41
+ <div style="text-align: center; max-width: 650px; margin: 0 auto;">
42
+ <h1 style="font-size: 2.5rem; font-weight: 700; margin-bottom: 1rem; display: contents;">Hyper-FLUX-8steps-LoRA</h1>
43
+ <p style="font-size: 1rem; margin-bottom: 1.5rem;">AutoML team from ByteDance</p>
44
+ </div>
45
+ """
46
+ )
47
+
48
+ with gr.Row():
49
+ with gr.Column(scale=3):
50
+ with gr.Group():
51
+ prompt = gr.Textbox(
52
+ label="Your Image Description",
53
+ placeholder="E.g., A serene landscape with mountains and a lake at sunset",
54
+ lines=3
55
+ )
56
+
57
+ with gr.Accordion("Advanced Settings", open=False):
58
+ with gr.Group():
59
+ with gr.Row():
60
+ height = gr.Slider(label="Height", minimum=256, maximum=1152, step=64, value=1024)
61
+ width = gr.Slider(label="Width", minimum=256, maximum=1152, step=64, value=1024)
62
+
63
+ with gr.Row():
64
+ steps = gr.Slider(label="Inference Steps", minimum=6, maximum=25, step=1, value=8)
65
+ scales = gr.Slider(label="Guidance Scale", minimum=0.0, maximum=5.0, step=0.1, value=3.5)
66
+
67
+ seed = gr.Number(label="Seed (for reproducibility)", value=3413, precision=0)
68
+
69
+ generate_btn = gr.Button("Generate Image", variant="primary", scale=1)
70
+
71
+ with gr.Column(scale=4):
72
+ output = gr.Image(label="Your Generated Image")
73
+
74
+ gr.Markdown(
75
+ """
76
+ <div style="max-width: 650px; margin: 2rem auto; padding: 1rem; border-radius: 10px; background-color: #f0f0f0;">
77
+ <h2 style="font-size: 1.5rem; margin-bottom: 1rem;">How to Use</h2>
78
+ <ol style="padding-left: 1.5rem;">
79
+ <li>Enter a detailed description of the image you want to create.</li>
80
+ <li>Adjust advanced settings if desired (tap to expand).</li>
81
+ <li>Tap "Generate Image" and wait for your creation!</li>
82
+ </ol>
83
+ <p style="margin-top: 1rem; font-style: italic;">Tip: Be specific in your description for best results!</p>
84
+ </div>
85
+ """
86
+ )
87
+
88
+ @spaces.GPU
89
+ def process_image(height, width, steps, scales, prompt, seed):
90
+ global pipe
91
+ with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16), timer("inference"):
92
+ return pipe(
93
+ prompt=[prompt],
94
+ generator=torch.Generator().manual_seed(int(seed)),
95
+ num_inference_steps=int(steps),
96
+ guidance_scale=float(scales),
97
+ height=int(height),
98
+ width=int(width),
99
+ max_sequence_length=256
100
+ ).images[0]
101
+
102
+ generate_btn.click(
103
+ process_image,
104
+ inputs=[height, width, steps, scales, prompt, seed],
105
+ outputs=output
106
+ )
107
+
108
+ if __name__ == "__main__":
109
+ demo.launch()
app (6).py ADDED
@@ -0,0 +1,109 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import spaces
2
+ import argparse
3
+ import os
4
+ import time
5
+ from os import path
6
+ from safetensors.torch import load_file
7
+ from huggingface_hub import hf_hub_download
8
+
9
+ cache_path = path.join(path.dirname(path.abspath(__file__)), "models")
10
+ os.environ["TRANSFORMERS_CACHE"] = cache_path
11
+ os.environ["HF_HUB_CACHE"] = cache_path
12
+ os.environ["HF_HOME"] = cache_path
13
+
14
+ import gradio as gr
15
+ import torch
16
+ from diffusers import FluxPipeline
17
+
18
+ torch.backends.cuda.matmul.allow_tf32 = True
19
+
20
+ class timer:
21
+ def __init__(self, method_name="timed process"):
22
+ self.method = method_name
23
+ def __enter__(self):
24
+ self.start = time.time()
25
+ print(f"{self.method} starts")
26
+ def __exit__(self, exc_type, exc_val, exc_tb):
27
+ end = time.time()
28
+ print(f"{self.method} took {str(round(end - self.start, 2))}s")
29
+
30
+ if not path.exists(cache_path):
31
+ os.makedirs(cache_path, exist_ok=True)
32
+
33
+ pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16)
34
+ pipe.load_lora_weights(hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors"))
35
+ pipe.fuse_lora(lora_scale=0.125)
36
+ pipe.to(device="cuda", dtype=torch.bfloat16)
37
+
38
+ with gr.Blocks(theme=gr.themes.Soft()) as demo:
39
+ gr.Markdown(
40
+ """
41
+ <div style="text-align: center; max-width: 650px; margin: 0 auto;">
42
+ <h1 style="font-size: 2.5rem; font-weight: 700; margin-bottom: 1rem; display: contents;">Hyper-FLUX-8steps-LoRA</h1>
43
+ <p style="font-size: 1rem; margin-bottom: 1.5rem;">AutoML team from ByteDance</p>
44
+ </div>
45
+ """
46
+ )
47
+
48
+ with gr.Row():
49
+ with gr.Column(scale=3):
50
+ with gr.Group():
51
+ prompt = gr.Textbox(
52
+ label="Your Image Description",
53
+ placeholder="E.g., A serene landscape with mountains and a lake at sunset",
54
+ lines=3
55
+ )
56
+
57
+ with gr.Accordion("Advanced Settings", open=False):
58
+ with gr.Group():
59
+ with gr.Row():
60
+ height = gr.Slider(label="Height", minimum=256, maximum=1152, step=64, value=1024)
61
+ width = gr.Slider(label="Width", minimum=256, maximum=1152, step=64, value=1024)
62
+
63
+ with gr.Row():
64
+ steps = gr.Slider(label="Inference Steps", minimum=6, maximum=25, step=1, value=8)
65
+ scales = gr.Slider(label="Guidance Scale", minimum=0.0, maximum=5.0, step=0.1, value=3.5)
66
+
67
+ seed = gr.Number(label="Seed (for reproducibility)", value=3413, precision=0)
68
+
69
+ generate_btn = gr.Button("Generate Image", variant="primary", scale=1)
70
+
71
+ with gr.Column(scale=4):
72
+ output = gr.Image(label="Your Generated Image")
73
+
74
+ gr.Markdown(
75
+ """
76
+ <div style="max-width: 650px; margin: 2rem auto; padding: 1rem; border-radius: 10px; background-color: #f0f0f0;">
77
+ <h2 style="font-size: 1.5rem; margin-bottom: 1rem;">How to Use</h2>
78
+ <ol style="padding-left: 1.5rem;">
79
+ <li>Enter a detailed description of the image you want to create.</li>
80
+ <li>Adjust advanced settings if desired (tap to expand).</li>
81
+ <li>Tap "Generate Image" and wait for your creation!</li>
82
+ </ol>
83
+ <p style="margin-top: 1rem; font-style: italic;">Tip: Be specific in your description for best results!</p>
84
+ </div>
85
+ """
86
+ )
87
+
88
+ @spaces.GPU
89
+ def process_image(height, width, steps, scales, prompt, seed):
90
+ global pipe
91
+ with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16), timer("inference"):
92
+ return pipe(
93
+ prompt=[prompt],
94
+ generator=torch.Generator().manual_seed(int(seed)),
95
+ num_inference_steps=int(steps),
96
+ guidance_scale=float(scales),
97
+ height=int(height),
98
+ width=int(width),
99
+ max_sequence_length=256
100
+ ).images[0]
101
+
102
+ generate_btn.click(
103
+ process_image,
104
+ inputs=[height, width, steps, scales, prompt, seed],
105
+ outputs=output
106
+ )
107
+
108
+ if __name__ == "__main__":
109
+ demo.launch()