File size: 1,949 Bytes
ef2e99f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
992a7b2
ef2e99f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ffd9e0b
ef2e99f
 
 
 
 
 
992a7b2
 
 
 
 
 
 
 
 
 
ef2e99f
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
---
library_name: transformers
license: mit
base_model: microsoft/speecht5_tts
tags:
- generated_from_trainer
model-index:
- name: speecht5_finetuned_emirhan_tr
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# speecht5_finetuned_emirhan_tr

This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2990

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- training_steps: 1000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.5108        | 0.0571 | 100  | 0.4464          |
| 0.42          | 0.1142 | 200  | 0.3574          |
| 0.377         | 0.1713 | 300  | 0.3402          |
| 0.3568        | 0.2284 | 400  | 0.3280          |
| 0.3474        | 0.2855 | 500  | 0.3244          |
| 0.3439        | 0.3426 | 600  | 0.3145          |
| 0.3337        | 0.3997 | 700  | 0.3114          |
| 0.3307        | 0.4568 | 800  | 0.3041          |
| 0.3243        | 0.5140 | 900  | 0.3001          |
| 0.3231        | 0.5711 | 1000 | 0.2990          |


### Framework versions

- Transformers 4.45.1
- Pytorch 2.4.0
- Datasets 3.0.1
- Tokenizers 0.20.0