File size: 3,444 Bytes
ed6b430 0f9cc8c ed6b430 0e953f6 ed6b430 76c69de ed6b430 0f9cc8c ed6b430 0f9cc8c ed6b430 a8dc45d ed6b430 0c5f306 ed6b430 0f9cc8c ed6b430 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 |
---
tags:
- text-generation
license: cc-by-nc-4.0
language:
- ko
base_model: beomi/OPEN-SOLAR-KO-10.7B
pipeline_tag: text-generation
---
# **DataVortexS-10.7B-dpo-v1.1**
<img src="./DataVortex.png" alt="DataVortex" style="height: 8em;">
## Our Team
| Research & Engineering | Product Management |
| :--------------------: | :----------------: |
| Kwangseok Yang | Seunghyun Choi |
| Jeongwon Choi | Hyoseok Choi |
## **Model Details**
### **Base Model**
[beomi/OPEN-SOLAR-KO-10.7B](https://huggingface.co/beomi/OPEN-SOLAR-KO-10.7B)
### **Trained On**
- **OS**: Ubuntu 22.04
- **GPU**: H100 80GB 4ea
- **transformers**: v4.36.2
### **Instruction format**
It follows **Alpaca (Chat)** format.
E.g.
```python
text = """\
### System:
λΉμ μ μ¬λλ€μ΄ μ 보λ₯Ό μ°Ύμ μ μλλ‘ λμμ£Όλ μΈκ³΅μ§λ₯ λΉμμ
λλ€.
### User:
λνλ―Όκ΅μ μλλ μ΄λμΌ?
### Assistant:
λνλ―Όκ΅μ μλλ μμΈμ
λλ€.
### User:
μμΈ μΈκ΅¬λ μ΄ λͺ λͺ
μ΄μΌ?
"""
```
## **Model Benchmark**
### **[Ko LM Eval Harness](https://github.com/Beomi/ko-lm-evaluation-harness)**
| Task | 0-shot | 5-shot | 10-shot | 50-shot |
| :--------------- | -----------: | -----------: | -----------: | -----------: |
| kobest_boolq | 0.915201 | 0.908687 | 0.912913 | 0.912913 |
| kobest_copa | 0.815575 | 0.858739 | 0.865826 | 0.876896 |
| kobest_hellaswag | 0.510673 | 0.515149 | 0.517118 | 0.517941 |
| kobest_sentineg | 0.3517 | 0.977329 | 0.992443 | 0.984886 |
| **Average** | **0.648287** | **0.814976** | **0.822075** | **0.823159** |
### **[Ko-LLM-Leaderboard](https://huggingface.co/spaces/upstage/open-ko-llm-leaderboard)**
| Average | Ko-ARC | Ko-HellaSwag | Ko-MMLU | Ko-TruthfulQA | Ko-CommonGen V2 |
| ------: | -----: | -----------: | ------: | ------------: | --------------: |
| 56.78 | 54.35 | 63.44 | 51.09 | 53.85 | 61.16 |
## **Implementation Code**
This model contains the chat_template instruction format.
You can use the code below.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
device = "cuda" # the device to load the model onto
model = AutoModelForCausalLM.from_pretrained("Edentns/DataVortexS-10.7B-dpo-v1.1")
tokenizer = AutoTokenizer.from_pretrained("Edentns/DataVortexS-10.7B-dpo-v1.1")
messages = [
{"role": "system", "content": "λΉμ μ μ¬λλ€μ΄ μ 보λ₯Ό μ°Ύμ μ μλλ‘ λμμ£Όλ μΈκ³΅μ§λ₯ λΉμμ
λλ€."},
{"role": "user", "content": "λνλ―Όκ΅μ μλλ μ΄λμΌ?"},
{"role": "assistant", "content": "λνλ―Όκ΅μ μλλ μμΈμ
λλ€."},
{"role": "user", "content": "μμΈ μΈκ΅¬λ μ΄ λͺ λͺ
μ΄μΌ?"}
]
encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt")
model_inputs = encodeds.to(device)
model.to(device)
generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True)
decoded = tokenizer.batch_decode(generated_ids)
print(decoded[0])
```
## **License**
This model is licensed under the [cc-by-nc-4.0](https://creativecommons.org/licenses/by-nc/4.0/). which allows others to share and adapt the model for non-commercial purposes.
<div align="center">
<a href="https://edentns.com/">
<img src="./Logo.png" alt="Logo" style="height: 3em;">
</a>
</div>
|