Edu4000 commited on
Commit
feec18e
·
1 Parent(s): 94b804b

Uploading the model to HF

Browse files
MoonLanding_v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fcbec5d46b1b0382a83f85e626b3a8838dde3a3af9f2669cd2a7cced21cb34e8
3
+ size 146683
MoonLanding_v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
MoonLanding_v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7815ab815e10>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7815ab815ea0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7815ab815f30>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7815ab815fc0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7815ab816050>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7815ab8160e0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7815ab816170>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7815ab816200>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7815ab816290>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7815ab816320>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7815ab8163b0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7815ab816440>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7815ab9bef80>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1696523000135374386,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM2SQbwcPV28PnT/PepGMb43EsQ7xkhIvgAAgD8AAIA/mrCaPBT4orrr8e+yAsHyLkPyxrlLVLozAACAPwAAgD+A61c9nnihPmo5Kr4LY6u+MpJKvaZnJb0AAAAAAAAAAJrDP7xIC466Ql7wtEdGJ7Cd2I85E1ZTNAAAgD8AAIA/zWgvvCaTsj9AV1e+gz5GvrB0DTwoVEM8AAAAAAAAAACA9hU9SGuLukLZSzWJ8i+v1QXeurSFRrQAAIA/AACAP+1gS75gIcs+c1F9Pptanr68YQ88hUsSvQAAAAAAAAAAmjdZPIkPGz7lV8O90iegvuxYAb1b/IS8AAAAAAAAAACNZaY9RtBUP4vqUr5+vOy+s3UAvM9svr0AAAAAAAAAAI1F0r2pKpk/ag+RvqlIF7+PJym+VR7KvQAAAAAAAAAAM9/IvArPEbsXa7i7BnWTPCK08Ltbm349AACAPwAAgD+aPxk8HNkMvFp3u7vRBpU8ZrZevYBCeD0AAIA/AACAP820MryP6mG6jyAhMAeeejB6U4c7bsNssQAAgD8AAIA/AEzIOz9wkD94T6a7ztrmvsJZID22UXo7AAAAAAAAAADmQzy9WKeiP+iaMb5c5Aa/CgVivZIRY70AAAAAAAAAAPO8tL1I14W6OAH1tmQ6zLEmIZO6DW0PNgAAAAAAAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVDQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG+ZPy9VWCGMAWyUS9qMAXSUR0Cp+c+Y2Kl6dX2UKGgGR0BxdbwnYxtYaAdNEgFoCEdAqfpHxWkrPXV9lChoBkdAcCEmKZUkwGgHTR8BaAhHQKn6U3Q2MsJ1fZQoaAZHQG+znOryUcJoB0v3aAhHQKn6Zh2GIsR1fZQoaAZHQHDsvrGBFuxoB0vnaAhHQKn6mKl54W11fZQoaAZHQHM13U2DQJJoB0vmaAhHQKn7EojOcDt1fZQoaAZHQHMEWsA/9pBoB00YAWgIR0Cp+2/k3juKdX2UKGgGR0BxY/v4M4LkaAdNJgFoCEdAqft9RgqmTHV9lChoBkdAcDNOoYNy52gHTRMBaAhHQKn7xQ1JlJ91fZQoaAZHQHCKKTSsr/doB0vcaAhHQKn8O7muDBd1fZQoaAZHQE+1MfRu0kZoB0vKaAhHQKn8YrOqvNh1fZQoaAZHQHJdbZvkzXVoB0vbaAhHQKn8ZCgsbvR1fZQoaAZHQHLz5WV/tppoB0v8aAhHQKn8jhP0qYt1fZQoaAZHQHFv1dxAB1doB00bAWgIR0Cp/WHzpX6qdX2UKGgGR0BvMdTkyULVaAdNFQFoCEdAqf1q0hNdq3V9lChoBkdAcPWKneizs2gHS/VoCEdAqf3D6SDAanV9lChoBkdAcUrj4Hoou2gHTQgBaAhHQKn+EL9deIF1fZQoaAZHQHDUfZyuIRBoB0vYaAhHQKn+7CaZx711fZQoaAZHQHConXRPXTVoB0v9aAhHQKn/Gu1WsBB1fZQoaAZHQHGDvOyE+PloB00rAWgIR0Cp/z7YK6WgdX2UKGgGR0BzZKCGvfTDaAdL7mgIR0Cp/3VzQu27dX2UKGgGR0By3KmgrYoRaAdL8mgIR0CqAMP9UCJXdX2UKGgGR0BwS5/J/5LzaAdL7GgIR0CqAN5CngpCdX2UKGgGR0BxD2qdYnv2aAdNIwFoCEdAqgEbx0+1SnV9lChoBkdAcUl6ab4Ju2gHS/ZoCEdAqgFnxhDw6XV9lChoBkdAcRZAlfJFLGgHTQYBaAhHQKoBffvWpZR1fZQoaAZHQHG/lglWwNdoB0vvaAhHQKoCj1EmY0F1fZQoaAZHQHICuokzGgloB0vmaAhHQKoDGqioKlZ1fZQoaAZHQHKZ8vqTr3VoB0v3aAhHQKoDKrfcesB1fZQoaAZHQHE0twFTvRZoB00lAWgIR0CqA9ubZvkzdX2UKGgGR0BSg21D0DlpaAdL02gIR0CqA/ddu5z6dX2UKGgGR0Bx1r5ftx+8aAdNCAFoCEdAqgUXAKv3anV9lChoBkdAcSWLHMlkY2gHTRoBaAhHQKoGBmYBvJl1fZQoaAZHQHI3QzpHI6toB001AWgIR0CqBg2dmQKbdX2UKGgGR0BxR1P0qYqoaAdL4mgIR0CqBihUaQ3hdX2UKGgGR0Bt2puZTho/aAdL4WgIR0CqBskHlfZ3dX2UKGgGR0BxVhBJI1+BaAdL/2gIR0CqBzqzRhMKdX2UKGgGR0BjIkDlo11oaAdN6ANoCEdAqgeC35N47nV9lChoBkdAcZUos7MgU2gHTTgBaAhHQKoQYBHTZxt1fZQoaAZHQHFZHrD63y9oB0vnaAhHQKoQnTm4iHJ1fZQoaAZHQHDtgx33YcxoB00YAWgIR0CqEQQumJm/dX2UKGgGR0BwWXHeaa1DaAdL42gIR0CqEQ881XNkdX2UKGgGR0BxDa4/eLvUaAdNFAFoCEdAqhFY9gWrO3V9lChoBkdAcZTz9jwx32gHTZkBaAhHQKoSMjrzGxV1fZQoaAZHQHL/2yC4BmxoB003AWgIR0CqElnfEXLvdX2UKGgGR0BzenTspoboaAdL7GgIR0CqEnRBNVR2dX2UKGgGR0BxqIYTCcgAaAdNEQFoCEdAqhJ8BQvYe3V9lChoBkdAcXH82aUiZGgHS/5oCEdAqhLDaXa8H3V9lChoBkdAcIBhegL7XWgHTQQBaAhHQKoSy6oVEeB1fZQoaAZHQHDCrJGOMl1oB0veaAhHQKoTmTlkpZx1fZQoaAZHQHIiTUmUnohoB00vAWgIR0CqE9W8h9srdX2UKGgGR0Bi788TzundaAdN6ANoCEdAqhPgDNhVl3V9lChoBkdAcKAEOy3TeGgHTS4BaAhHQKoUD8YQ8Ol1fZQoaAZHQHLcJ44ZMtdoB00lAWgIR0CqFBhSk0rLdX2UKGgGR0Bkd6coYvWZaAdN6ANoCEdAqhR7rHEMs3V9lChoBkdAczqciW3Sa2gHS/RoCEdAqhSA1YQrc3V9lChoBkdAbz2ctGus92gHTRABaAhHQKoUfftQbdd1fZQoaAZHQHAMIkJKJ2toB0v7aAhHQKoUi/D+BH11fZQoaAZHQHB+3QpnYg9oB00NAWgIR0CqFPuUliSadX2UKGgGR0ByfH/Q0GeMaAdL62gIR0CqFYZOJtSAdX2UKGgGR0BxMM+cH4XXaAdNBAFoCEdAqhW7WkJrtXV9lChoBkdAb4oFDfFaS2gHS/5oCEdAqhW+rGR3eXV9lChoBkdAcFOta6jFh2gHTRABaAhHQKoVwcpb2UV1fZQoaAZHQHCv78rI5o5oB0vnaAhHQKoVxStvGZN1fZQoaAZHQHHV29YfW+ZoB00VAWgIR0CqFkGi5/b1dX2UKGgGR0Byz4iB5HEuaAdL6mgIR0CqFnN7KJVKdX2UKGgGR0BxFPE9+w1SaAdL+GgIR0CqFte5Fw1jdX2UKGgGR0BxJ3HcUM5PaAdL9GgIR0CqFwlN+LFXdX2UKGgGR0BzDF56dDpkaAdNFAFoCEdAqhc8Muvll3V9lChoBkdAc/DT1TR6W2gHS+loCEdAqhdOk56t1nV9lChoBkdAcmff7aZhKGgHS+loCEdAqhdLw4KhMHV9lChoBkdAcAhFKCg9NmgHS+9oCEdAqhdcvEjxC3V9lChoBkdAb11nrY5DJGgHTQgBaAhHQKoXti3G4qh1fZQoaAZHQHPTNV7x/d9oB008AWgIR0CqF+BysCDFdX2UKGgGR0Bw5hoL5RCQaAdL+WgIR0CqGAJV81GcdX2UKGgGR0Bt/285CF9KaAdL+GgIR0CqGIcPWhAXdX2UKGgGR0BwJa9AX2ugaAdL6GgIR0CqGIdp7CzkdX2UKGgGR0BHMSB06o2oaAdLrWgIR0CqGJIMBp6AdX2UKGgGR0Bw1xRbbDdhaAdL9GgIR0CqGK7rcCYDdX2UKGgGR0BzKFOymhugaAdNDgFoCEdAqhj4aUA1enV9lChoBkdAcZyXhOxja2gHS/toCEdAqhlOfseGPHV9lChoBkdAcicEidJ8OWgHTTcBaAhHQKoZgzsyBTZ1fZQoaAZHQEjLqTr3TNNoB0vIaAhHQKoZvzXjENx1fZQoaAZHQHJAgG4ZuQ9oB0v1aAhHQKoZzCE6DGt1fZQoaAZHQHKoTefqX4VoB0vnaAhHQKoaAnmaH9F1fZQoaAZHQHF0aa1Cw8poB00WAWgIR0CqGni/47A+dX2UKGgGR0BxRtbor4FiaAdNBwFoCEdAqhqNI/Z/TnV9lChoBkdAcVESxqwhXGgHS9xoCEdAqhqghStNjHV9lChoBkdAc2yYqG1x82gHTRABaAhHQKoapwKBuoB1fZQoaAZHQHEFMPFvQ4VoB0v4aAhHQKoazPqs2eh1fZQoaAZHQFMtIXTEzftoB0upaAhHQKoa1kMkQf91fZQoaAZHQG9VZW7voeRoB0vuaAhHQKoa+Sh8IAx1fZQoaAZHQHGr0qYqoZRoB0vvaAhHQKobf44ZMtd1fZQoaAZHQG55+n62v0RoB0vzaAhHQKobjCj1wo91fZQoaAZHQG7BY7Rv3rVoB0v+aAhHQKobuCtihFp1fZQoaAZHQHIVfLTx5LRoB00AAWgIR0CqHDJZwGW2dX2UKGgGR0BuByx3V09yaAdNIwFoCEdAqh1pd+ocaXV9lChoBkdAcDfxaxHG0mgHTRQBaAhHQKodcFlkH2R1fZQoaAZHQGx1cpLEk0JoB00FAWgIR0CqHZqZUkv9dX2UKGgGR0BuJlXvH93saAdL5GgIR0CqHfxOclPadWUu"
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 496,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
MoonLanding_v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d8ed1836765c78bfeb6434771a5262c25f19afe16c977ccf535a8a3d0298e81e
3
+ size 87929
MoonLanding_v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d820ebb8654b754ff86e9f4fce7756f5ae35aeb4bf0c175c31dd75012094343d
3
+ size 43329
MoonLanding_v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
MoonLanding_v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 263.50 +/- 16.71
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7815ab815e10>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7815ab815ea0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7815ab815f30>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7815ab815fc0>", "_build": "<function ActorCriticPolicy._build at 0x7815ab816050>", "forward": "<function ActorCriticPolicy.forward at 0x7815ab8160e0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7815ab816170>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7815ab816200>", "_predict": "<function ActorCriticPolicy._predict at 0x7815ab816290>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7815ab816320>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7815ab8163b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7815ab816440>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7815ab9bef80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1696523000135374386, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM2SQbwcPV28PnT/PepGMb43EsQ7xkhIvgAAgD8AAIA/mrCaPBT4orrr8e+yAsHyLkPyxrlLVLozAACAPwAAgD+A61c9nnihPmo5Kr4LY6u+MpJKvaZnJb0AAAAAAAAAAJrDP7xIC466Ql7wtEdGJ7Cd2I85E1ZTNAAAgD8AAIA/zWgvvCaTsj9AV1e+gz5GvrB0DTwoVEM8AAAAAAAAAACA9hU9SGuLukLZSzWJ8i+v1QXeurSFRrQAAIA/AACAP+1gS75gIcs+c1F9Pptanr68YQ88hUsSvQAAAAAAAAAAmjdZPIkPGz7lV8O90iegvuxYAb1b/IS8AAAAAAAAAACNZaY9RtBUP4vqUr5+vOy+s3UAvM9svr0AAAAAAAAAAI1F0r2pKpk/ag+RvqlIF7+PJym+VR7KvQAAAAAAAAAAM9/IvArPEbsXa7i7BnWTPCK08Ltbm349AACAPwAAgD+aPxk8HNkMvFp3u7vRBpU8ZrZevYBCeD0AAIA/AACAP820MryP6mG6jyAhMAeeejB6U4c7bsNssQAAgD8AAIA/AEzIOz9wkD94T6a7ztrmvsJZID22UXo7AAAAAAAAAADmQzy9WKeiP+iaMb5c5Aa/CgVivZIRY70AAAAAAAAAAPO8tL1I14W6OAH1tmQ6zLEmIZO6DW0PNgAAAAAAAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVDQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG+ZPy9VWCGMAWyUS9qMAXSUR0Cp+c+Y2Kl6dX2UKGgGR0BxdbwnYxtYaAdNEgFoCEdAqfpHxWkrPXV9lChoBkdAcCEmKZUkwGgHTR8BaAhHQKn6U3Q2MsJ1fZQoaAZHQG+znOryUcJoB0v3aAhHQKn6Zh2GIsR1fZQoaAZHQHDsvrGBFuxoB0vnaAhHQKn6mKl54W11fZQoaAZHQHM13U2DQJJoB0vmaAhHQKn7EojOcDt1fZQoaAZHQHMEWsA/9pBoB00YAWgIR0Cp+2/k3juKdX2UKGgGR0BxY/v4M4LkaAdNJgFoCEdAqft9RgqmTHV9lChoBkdAcDNOoYNy52gHTRMBaAhHQKn7xQ1JlJ91fZQoaAZHQHCKKTSsr/doB0vcaAhHQKn8O7muDBd1fZQoaAZHQE+1MfRu0kZoB0vKaAhHQKn8YrOqvNh1fZQoaAZHQHJdbZvkzXVoB0vbaAhHQKn8ZCgsbvR1fZQoaAZHQHLz5WV/tppoB0v8aAhHQKn8jhP0qYt1fZQoaAZHQHFv1dxAB1doB00bAWgIR0Cp/WHzpX6qdX2UKGgGR0BvMdTkyULVaAdNFQFoCEdAqf1q0hNdq3V9lChoBkdAcPWKneizs2gHS/VoCEdAqf3D6SDAanV9lChoBkdAcUrj4Hoou2gHTQgBaAhHQKn+EL9deIF1fZQoaAZHQHDUfZyuIRBoB0vYaAhHQKn+7CaZx711fZQoaAZHQHConXRPXTVoB0v9aAhHQKn/Gu1WsBB1fZQoaAZHQHGDvOyE+PloB00rAWgIR0Cp/z7YK6WgdX2UKGgGR0BzZKCGvfTDaAdL7mgIR0Cp/3VzQu27dX2UKGgGR0By3KmgrYoRaAdL8mgIR0CqAMP9UCJXdX2UKGgGR0BwS5/J/5LzaAdL7GgIR0CqAN5CngpCdX2UKGgGR0BxD2qdYnv2aAdNIwFoCEdAqgEbx0+1SnV9lChoBkdAcUl6ab4Ju2gHS/ZoCEdAqgFnxhDw6XV9lChoBkdAcRZAlfJFLGgHTQYBaAhHQKoBffvWpZR1fZQoaAZHQHG/lglWwNdoB0vvaAhHQKoCj1EmY0F1fZQoaAZHQHICuokzGgloB0vmaAhHQKoDGqioKlZ1fZQoaAZHQHKZ8vqTr3VoB0v3aAhHQKoDKrfcesB1fZQoaAZHQHE0twFTvRZoB00lAWgIR0CqA9ubZvkzdX2UKGgGR0BSg21D0DlpaAdL02gIR0CqA/ddu5z6dX2UKGgGR0Bx1r5ftx+8aAdNCAFoCEdAqgUXAKv3anV9lChoBkdAcSWLHMlkY2gHTRoBaAhHQKoGBmYBvJl1fZQoaAZHQHI3QzpHI6toB001AWgIR0CqBg2dmQKbdX2UKGgGR0BxR1P0qYqoaAdL4mgIR0CqBihUaQ3hdX2UKGgGR0Bt2puZTho/aAdL4WgIR0CqBskHlfZ3dX2UKGgGR0BxVhBJI1+BaAdL/2gIR0CqBzqzRhMKdX2UKGgGR0BjIkDlo11oaAdN6ANoCEdAqgeC35N47nV9lChoBkdAcZUos7MgU2gHTTgBaAhHQKoQYBHTZxt1fZQoaAZHQHFZHrD63y9oB0vnaAhHQKoQnTm4iHJ1fZQoaAZHQHDtgx33YcxoB00YAWgIR0CqEQQumJm/dX2UKGgGR0BwWXHeaa1DaAdL42gIR0CqEQ881XNkdX2UKGgGR0BxDa4/eLvUaAdNFAFoCEdAqhFY9gWrO3V9lChoBkdAcZTz9jwx32gHTZkBaAhHQKoSMjrzGxV1fZQoaAZHQHL/2yC4BmxoB003AWgIR0CqElnfEXLvdX2UKGgGR0BzenTspoboaAdL7GgIR0CqEnRBNVR2dX2UKGgGR0BxqIYTCcgAaAdNEQFoCEdAqhJ8BQvYe3V9lChoBkdAcXH82aUiZGgHS/5oCEdAqhLDaXa8H3V9lChoBkdAcIBhegL7XWgHTQQBaAhHQKoSy6oVEeB1fZQoaAZHQHDCrJGOMl1oB0veaAhHQKoTmTlkpZx1fZQoaAZHQHIiTUmUnohoB00vAWgIR0CqE9W8h9srdX2UKGgGR0Bi788TzundaAdN6ANoCEdAqhPgDNhVl3V9lChoBkdAcKAEOy3TeGgHTS4BaAhHQKoUD8YQ8Ol1fZQoaAZHQHLcJ44ZMtdoB00lAWgIR0CqFBhSk0rLdX2UKGgGR0Bkd6coYvWZaAdN6ANoCEdAqhR7rHEMs3V9lChoBkdAczqciW3Sa2gHS/RoCEdAqhSA1YQrc3V9lChoBkdAbz2ctGus92gHTRABaAhHQKoUfftQbdd1fZQoaAZHQHAMIkJKJ2toB0v7aAhHQKoUi/D+BH11fZQoaAZHQHB+3QpnYg9oB00NAWgIR0CqFPuUliSadX2UKGgGR0ByfH/Q0GeMaAdL62gIR0CqFYZOJtSAdX2UKGgGR0BxMM+cH4XXaAdNBAFoCEdAqhW7WkJrtXV9lChoBkdAb4oFDfFaS2gHS/5oCEdAqhW+rGR3eXV9lChoBkdAcFOta6jFh2gHTRABaAhHQKoVwcpb2UV1fZQoaAZHQHCv78rI5o5oB0vnaAhHQKoVxStvGZN1fZQoaAZHQHHV29YfW+ZoB00VAWgIR0CqFkGi5/b1dX2UKGgGR0Byz4iB5HEuaAdL6mgIR0CqFnN7KJVKdX2UKGgGR0BxFPE9+w1SaAdL+GgIR0CqFte5Fw1jdX2UKGgGR0BxJ3HcUM5PaAdL9GgIR0CqFwlN+LFXdX2UKGgGR0BzDF56dDpkaAdNFAFoCEdAqhc8Muvll3V9lChoBkdAc/DT1TR6W2gHS+loCEdAqhdOk56t1nV9lChoBkdAcmff7aZhKGgHS+loCEdAqhdLw4KhMHV9lChoBkdAcAhFKCg9NmgHS+9oCEdAqhdcvEjxC3V9lChoBkdAb11nrY5DJGgHTQgBaAhHQKoXti3G4qh1fZQoaAZHQHPTNV7x/d9oB008AWgIR0CqF+BysCDFdX2UKGgGR0Bw5hoL5RCQaAdL+WgIR0CqGAJV81GcdX2UKGgGR0Bt/285CF9KaAdL+GgIR0CqGIcPWhAXdX2UKGgGR0BwJa9AX2ugaAdL6GgIR0CqGIdp7CzkdX2UKGgGR0BHMSB06o2oaAdLrWgIR0CqGJIMBp6AdX2UKGgGR0Bw1xRbbDdhaAdL9GgIR0CqGK7rcCYDdX2UKGgGR0BzKFOymhugaAdNDgFoCEdAqhj4aUA1enV9lChoBkdAcZyXhOxja2gHS/toCEdAqhlOfseGPHV9lChoBkdAcicEidJ8OWgHTTcBaAhHQKoZgzsyBTZ1fZQoaAZHQEjLqTr3TNNoB0vIaAhHQKoZvzXjENx1fZQoaAZHQHJAgG4ZuQ9oB0v1aAhHQKoZzCE6DGt1fZQoaAZHQHKoTefqX4VoB0vnaAhHQKoaAnmaH9F1fZQoaAZHQHF0aa1Cw8poB00WAWgIR0CqGni/47A+dX2UKGgGR0BxRtbor4FiaAdNBwFoCEdAqhqNI/Z/TnV9lChoBkdAcVESxqwhXGgHS9xoCEdAqhqghStNjHV9lChoBkdAc2yYqG1x82gHTRABaAhHQKoapwKBuoB1fZQoaAZHQHEFMPFvQ4VoB0v4aAhHQKoazPqs2eh1fZQoaAZHQFMtIXTEzftoB0upaAhHQKoa1kMkQf91fZQoaAZHQG9VZW7voeRoB0vuaAhHQKoa+Sh8IAx1fZQoaAZHQHGr0qYqoZRoB0vvaAhHQKobf44ZMtd1fZQoaAZHQG55+n62v0RoB0vzaAhHQKobjCj1wo91fZQoaAZHQG7BY7Rv3rVoB0v+aAhHQKobuCtihFp1fZQoaAZHQHIVfLTx5LRoB00AAWgIR0CqHDJZwGW2dX2UKGgGR0BuByx3V09yaAdNIwFoCEdAqh1pd+ocaXV9lChoBkdAcDfxaxHG0mgHTRQBaAhHQKodcFlkH2R1fZQoaAZHQGx1cpLEk0JoB00FAWgIR0CqHZqZUkv9dX2UKGgGR0BuJlXvH93saAdL5GgIR0CqHfxOclPadWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 496, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
replay.mp4 ADDED
Binary file (161 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 263.5040655, "std_reward": 16.708821394808005, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-10-05T16:55:51.619497"}