EduardoCGarridoMerchan commited on
Commit
aaf3af4
·
1 Parent(s): 08ba3ff

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 260.63 +/- 25.33
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f989059e670>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f989059e700>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f989059e790>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f989059e820>", "_build": "<function ActorCriticPolicy._build at 0x7f989059e8b0>", "forward": "<function ActorCriticPolicy.forward at 0x7f989059e940>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f989059e9d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f989059ea60>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f989059eaf0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f989059eb80>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f989059ec10>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f989059cc90>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 10010624, "_total_timesteps": 10000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673021627627063557, "learning_rate": 3e-05, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc+/3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAAcmTwpiDG6/prvuinPiLZr0sc7x0YLOgAAgD8AAIA/AIB8OeHGnLo8Vaa60W6ytdOvAjv/nr85AACAPwAAgD/6ODw+VjkLPz0AWr6cqrC+aZaSPebjXb4AAAAAAAAAADPQbr2uGZq6X+wkO9m3LTeM7Sq5PoH+NQAAgD8AAIA/APo1vPaYT7obDGo50EejNBLhhDsWE4m4AACAPwAAgD+ADZq9XC4ZPz97Sb27/aO+ePS0vXDitDwAAAAAAAAAADPPm7vhpIK6K09XOi3YGDaS+zs7Uxh7uQAAgD8AAIA/zTReO+FYgLql6dm6zF0xtvJwFDlaMvs5AACAPwAAgD/NzE85ewKquiWtgTt04JI4rwTCObqfqbkAAIA/AACAP7PaHr1cQ266GnkZuneRsDMi5bE6XdAxOQAAgD8AAIA/AICGvFzbP7qI1FY5jQVbNEWU37rbzny4AACAPwAAgD/mLZs9UqDlue4gFDydO8k12BO0OtDD0jQAAIA/AAAAAGY24rwUxJG6mwDnuvvDC7ZF4/45VUcFOgAAgD8AAIA/TdsFvSl4Nboh+5Y8LGGEPN53qLrC4WQ9AACAPwAAgD8Aad68KSRfujRalDuFKEG2Nz6HOy8UMLUAAIA/AACAP2YwETxIvYq6EGHnuiCyFbbfoCo7gU8GOgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0010623999999999079, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIG2fTEUC2b0CUhpRSlIwBbJRNxwGMAXSUR0DGTo+B+WnkdX2UKGgGaAloD0MI9SudD89qT0CUhpRSlGgVS+doFkdAxk7wCo0hvHV9lChoBmgJaA9DCGb0o+EUMmJAlIaUUpRoFU3oA2gWR0DGT5PjXFtLdX2UKGgGaAloD0MIgA7z5cXLcECUhpRSlGgVTSQCaBZHQMZPxL0jC551fZQoaAZoCWgPQwieX5SgvwhNQJSGlFKUaBVLuGgWR0DGUM9FWn0kdX2UKGgGaAloD0MIQWfSpupeZECUhpRSlGgVTegDaBZHQMZRcCfHxSZ1fZQoaAZoCWgPQwj9aDhl7o5iQJSGlFKUaBVN6ANoFkdAxlK2KHfuTnV9lChoBmgJaA9DCD7L8+DupGdAlIaUUpRoFU3oA2gWR0DGUsBS75EddX2UKGgGaAloD0MIcxHfiVkKYUCUhpRSlGgVTegDaBZHQMZSxrp7kXF1fZQoaAZoCWgPQwjIQnQIHEliQJSGlFKUaBVN6ANoFkdAxlM9xm03O3V9lChoBmgJaA9DCBZod0ixvmRAlIaUUpRoFU3oA2gWR0DGU0e2Xsw+dX2UKGgGaAloD0MIA+li08ofaECUhpRSlGgVTegDaBZHQMZTcDjBEa51fZQoaAZoCWgPQwgmOPWB5PpiQJSGlFKUaBVN6ANoFkdAxlNv/WlMy3V9lChoBmgJaA9DCFsmw/F83WNAlIaUUpRoFU3oA2gWR0DGU++8M/hVdX2UKGgGaAloD0MIFokJangCaECUhpRSlGgVTegDaBZHQMZWeqoAGSp1fZQoaAZoCWgPQwhKQbeXNBhlQJSGlFKUaBVN6ANoFkdAxlaeq/dqL3V9lChoBmgJaA9DCEoMAiuHEGNAlIaUUpRoFU3oA2gWR0DGVsu2mYShdX2UKGgGaAloD0MIjnVxGw1AaECUhpRSlGgVTegDaBZHQMZXK5rYXft1fZQoaAZoCWgPQwil2TwOA2VnQJSGlFKUaBVN6ANoFkdAxleZVYISlHV9lChoBmgJaA9DCMHHYMVpcXFAlIaUUpRoFU0mAWgWR0DGWDbZezD5dX2UKGgGaAloD0MIUWfuIeEJZECUhpRSlGgVTegDaBZHQMZYf2qkuYh1fZQoaAZoCWgPQwhE393KEl1uQJSGlFKUaBVNcgJoFkdAxllqslLOA3V9lChoBmgJaA9DCL9+iA2W22dAlIaUUpRoFU3oA2gWR0DGWYR4wAU+dX2UKGgGaAloD0MItaZ5x+lvcUCUhpRSlGgVTc0BaBZHQMZZt11GLDR1fZQoaAZoCWgPQwjVzFoKSAppQJSGlFKUaBVN6ANoFkdAxloKoQWepXV9lChoBmgJaA9DCM6luKrsI2VAlIaUUpRoFU3oA2gWR0DGWytwxWT5dX2UKGgGaAloD0MISnoYWh0rZkCUhpRSlGgVTegDaBZHQMZbNZKvmo11fZQoaAZoCWgPQwg7NgLxutZkQJSGlFKUaBVN6ANoFkdAxls8EmICVHV9lChoBmgJaA9DCMfyrnoAdnFAlIaUUpRoFU1mA2gWR0DGW5vX/YJ3dX2UKGgGaAloD0MIBaInZVJRZECUhpRSlGgVTegDaBZHQMZbs4mb9ZR1fZQoaAZoCWgPQwi5iVqa20pnQJSGlFKUaBVN6ANoFkdAxlvlEuxrz3V9lChoBmgJaA9DCNAKDFndUmJAlIaUUpRoFU3oA2gWR0DGW+TJMg2ZdX2UKGgGaAloD0MIvi8uVemHcUCUhpRSlGgVTR0CaBZHQMZfA1W8yvd1fZQoaAZoCWgPQwi+2ebG9A5iQJSGlFKUaBVN6ANoFkdAxl8XKdxyXHV9lChoBmgJaA9DCAeWI2SglXBAlIaUUpRoFU02AWgWR0DGX2Cs0YTCdX2UKGgGaAloD0MI4/xNKEQ3X0CUhpRSlGgVTegDaBZHQMZfuv6be/J1fZQoaAZoCWgPQwghPNo4YkZpQJSGlFKUaBVN6ANoFkdAxmApmaH9FXV9lChoBmgJaA9DCE8EcR7OlmJAlIaUUpRoFU3oA2gWR0DGYMQ4CIUKdX2UKGgGaAloD0MI06QUdPvzZkCUhpRSlGgVTegDaBZHQMZhC8Nx2jh1fZQoaAZoCWgPQwhm3T8WoplhQJSGlFKUaBVN6ANoFkdAxmITDx9XtHV9lChoBmgJaA9DCKYMHNDSp19AlIaUUpRoFU3oA2gWR0DGYkv+ZPVNdX2UKGgGaAloD0MIkjtsIjODZUCUhpRSlGgVTegDaBZHQMZiqX1anrJ1fZQoaAZoCWgPQwjMfAc/cRBvQJSGlFKUaBVNfAJoFkdAxmOEnwXqJXV9lChoBmgJaA9DCBKGAUsuUGdAlIaUUpRoFU3oA2gWR0DGY9ZNqQA/dX2UKGgGaAloD0MISyGQS5xWY0CUhpRSlGgVTegDaBZHQMZj5jIq9Xd1fZQoaAZoCWgPQwh5XFSLCKFiQJSGlFKUaBVN6ANoFkdAxmREo99tuXV9lChoBmgJaA9DCKexvRZ0xWVAlIaUUpRoFU3oA2gWR0DGZFx3iaRZdX2UKGgGaAloD0MIxR9FnTkUaECUhpRSlGgVTegDaBZHQMZkirVFx4p1fZQoaAZoCWgPQwgoucMmMtRkQJSGlFKUaBVN6ANoFkdAxmSKWC2+f3V9lChoBmgJaA9DCJEPejYrYGdAlIaUUpRoFU3oA2gWR0DGZVSHdoFndX2UKGgGaAloD0MIdlQ1QdS8ZECUhpRSlGgVTegDaBZHQMZlbCh37k51fZQoaAZoCWgPQwhfmbfqugtnQJSGlFKUaBVN6ANoFkdAxmjm4EOiFnV9lChoBmgJaA9DCHgpdcm4LWBAlIaUUpRoFU3oA2gWR0DGaVdNg0CSdX2UKGgGaAloD0MI1QloIuw3ZkCUhpRSlGgVTegDaBZHQMZp57laKUF1fZQoaAZoCWgPQwhHOgMjL65mQJSGlFKUaBVN6ANoFkdAxmopRb8m8nV9lChoBmgJaA9DCAvxSLw8oGhAlIaUUpRoFU3oA2gWR0DGaxW0NSZSdX2UKGgGaAloD0MI2NXkKSuvZkCUhpRSlGgVTegDaBZHQMZrSr+o99t1fZQoaAZoCWgPQwhEaW/whfdmQJSGlFKUaBVN6ANoFkdAxmujIeYD1XV9lChoBmgJaA9DCFfMCG8PN2NAlIaUUpRoFU3oA2gWR0DGbHoVh1DCdX2UKGgGaAloD0MIj3Ba8KIGZUCUhpRSlGgVTegDaBZHQMZszIWP91l1fZQoaAZoCWgPQwhoQL0Ztc5hQJSGlFKUaBVN6ANoFkdAxmzc5WilBXV9lChoBmgJaA9DCAABa9UuOnBAlIaUUpRoFU3dAWgWR0DGbSg7q6e5dX2UKGgGaAloD0MItW/urx7sX0CUhpRSlGgVTegDaBZHQMZtQEGA09B1fZQoaAZoCWgPQwjuk6MAUUZmQJSGlFKUaBVN6ANoFkdAxm1XtbcGknV9lChoBmgJaA9DCIfFqGstxHJAlIaUUpRoFU3kA2gWR0DGbYCW/rSmdX2UKGgGaAloD0MIks8rnnqSZECUhpRSlGgVTegDaBZHQMZtheDWbw11fZQoaAZoCWgPQwjhQh7BDbJlQJSGlFKUaBVN6ANoFkdAxm5XvWH1vnV9lChoBmgJaA9DCAVqMXgYhGNAlIaUUpRoFU3oA2gWR0DGbmtIqbz9dX2UKGgGaAloD0MIn5JzYo91ZECUhpRSlGgVTegDaBZHQMZxbL61stV1fZQoaAZoCWgPQwizRGeZRY1oQJSGlFKUaBVN6ANoFkdAxnHmV0tAcHV9lChoBmgJaA9DCHSXxFkRl2VAlIaUUpRoFU3oA2gWR0DGco/7BO58dX2UKGgGaAloD0MIoz1eSIfvYUCUhpRSlGgVTegDaBZHQMZz8Iyj59F1fZQoaAZoCWgPQwgDJnDrbkJkQJSGlFKUaBVN6ANoFkdAxnQoXOW0JHV9lChoBmgJaA9DCAQg7urVMWhAlIaUUpRoFU3oA2gWR0DGdIZRdhRZdX2UKGgGaAloD0MIcokjD8RXcUCUhpRSlGgVTdwCaBZHQMZ0qc+7lJZ1fZQoaAZoCWgPQwimXyLeOrJfQJSGlFKUaBVN6ANoFkdAxnVVjbSJCXV9lChoBmgJaA9DCGKdKt8zWWJAlIaUUpRoFU3oA2gWR0DGdZ1/tpmFdX2UKGgGaAloD0MI4QuTqYLKZECUhpRSlGgVTegDaBZHQMZ1q6O5rgx1fZQoaAZoCWgPQwiAK9mxkRBiQJSGlFKUaBVN6ANoFkdAxnXtLFn7HnV9lChoBmgJaA9DCBaiQ+DIjmNAlIaUUpRoFU3oA2gWR0DGdgMCq6vrdX2UKGgGaAloD0MIRdrGnyiTYUCUhpRSlGgVTegDaBZHQMZ2GRh2GIt1fZQoaAZoCWgPQwh7Lei9MUdeQJSGlFKUaBVN6ANoFkdAxnZEv4dp7HV9lChoBmgJaA9DCLEyGvk8TmVAlIaUUpRoFU3oA2gWR0DGdwf2TPjXdX2UKGgGaAloD0MI9E9wsSJ1ZkCUhpRSlGgVTegDaBZHQMZ3GsabWmR1fZQoaAZoCWgPQwhrmQzHc3JnQJSGlFKUaBVN6ANoFkdAxnoPYcNpd3V9lChoBmgJaA9DCKaAtP+BP2ZAlIaUUpRoFU3oA2gWR0DGensRL9MsdX2UKGgGaAloD0MIv0UnS63gZkCUhpRSlGgVTegDaBZHQMZ7CDJuEVZ1fZQoaAZoCWgPQwgpd5/j425yQJSGlFKUaBVNAwJoFkdAxntNK7I1cnV9lChoBmgJaA9DCIzXvKozvGNAlIaUUpRoFU3oA2gWR0DGfCJ8neBQdX2UKGgGaAloD0MIcy7FVWW0Y0CUhpRSlGgVTegDaBZHQMZ8UXr+o991fZQoaAZoCWgPQwi+T1WhAelkQJSGlFKUaBVN6ANoFkdAxnyhnuiN83V9lChoBmgJaA9DCONve4LEZ2RAlIaUUpRoFU3oA2gWR0DGfMEByS3cdX2UKGgGaAloD0MIdGA5QgYpaECUhpRSlGgVTegDaBZHQMZ9TjjR2KV1fZQoaAZoCWgPQwhPAwZJnwFkQJSGlFKUaBVN6ANoFkdAxn2PKaoddXV9lChoBmgJaA9DCNfCLLTzXmZAlIaUUpRoFU3oA2gWR0DGfZujGkvcdX2UKGgGaAloD0MIXvdWJKb/ZECUhpRSlGgVTegDaBZHQMZ91a/IsAh1fZQoaAZoCWgPQwhHjQkxl3BhQJSGlFKUaBVN6ANoFkdAxn388J2MbXV9lChoBmgJaA9DCAowLH++OWhAlIaUUpRoFU3oA2gWR0DGfiVeIEbHdX2UKGgGaAloD0MIsrj/yPSPZkCUhpRSlGgVTegDaBZHQMZ+62TxG2F1fZQoaAZoCWgPQwgBGM+gIbRhQJSGlFKUaBVN6ANoFkdAxn8AHck+o3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 2444, "n_steps": 1024, "gamma": 0.9999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 #1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8082c691a0997e1bf918f5c92916000d9a5174dd4ac33db189c858e3062ac097
3
+ size 147222
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f989059e670>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f989059e700>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f989059e790>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f989059e820>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f989059e8b0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f989059e940>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f989059e9d0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f989059ea60>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f989059eaf0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f989059eb80>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f989059ec10>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f989059cc90>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 10010624,
46
+ "_total_timesteps": 10000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1673021627627063557,
51
+ "learning_rate": 3e-05,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc+/3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAAcmTwpiDG6/prvuinPiLZr0sc7x0YLOgAAgD8AAIA/AIB8OeHGnLo8Vaa60W6ytdOvAjv/nr85AACAPwAAgD/6ODw+VjkLPz0AWr6cqrC+aZaSPebjXb4AAAAAAAAAADPQbr2uGZq6X+wkO9m3LTeM7Sq5PoH+NQAAgD8AAIA/APo1vPaYT7obDGo50EejNBLhhDsWE4m4AACAPwAAgD+ADZq9XC4ZPz97Sb27/aO+ePS0vXDitDwAAAAAAAAAADPPm7vhpIK6K09XOi3YGDaS+zs7Uxh7uQAAgD8AAIA/zTReO+FYgLql6dm6zF0xtvJwFDlaMvs5AACAPwAAgD/NzE85ewKquiWtgTt04JI4rwTCObqfqbkAAIA/AACAP7PaHr1cQ266GnkZuneRsDMi5bE6XdAxOQAAgD8AAIA/AICGvFzbP7qI1FY5jQVbNEWU37rbzny4AACAPwAAgD/mLZs9UqDlue4gFDydO8k12BO0OtDD0jQAAIA/AAAAAGY24rwUxJG6mwDnuvvDC7ZF4/45VUcFOgAAgD8AAIA/TdsFvSl4Nboh+5Y8LGGEPN53qLrC4WQ9AACAPwAAgD8Aad68KSRfujRalDuFKEG2Nz6HOy8UMLUAAIA/AACAP2YwETxIvYq6EGHnuiCyFbbfoCo7gU8GOgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.0010623999999999079,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIG2fTEUC2b0CUhpRSlIwBbJRNxwGMAXSUR0DGTo+B+WnkdX2UKGgGaAloD0MI9SudD89qT0CUhpRSlGgVS+doFkdAxk7wCo0hvHV9lChoBmgJaA9DCGb0o+EUMmJAlIaUUpRoFU3oA2gWR0DGT5PjXFtLdX2UKGgGaAloD0MIgA7z5cXLcECUhpRSlGgVTSQCaBZHQMZPxL0jC551fZQoaAZoCWgPQwieX5SgvwhNQJSGlFKUaBVLuGgWR0DGUM9FWn0kdX2UKGgGaAloD0MIQWfSpupeZECUhpRSlGgVTegDaBZHQMZRcCfHxSZ1fZQoaAZoCWgPQwj9aDhl7o5iQJSGlFKUaBVN6ANoFkdAxlK2KHfuTnV9lChoBmgJaA9DCD7L8+DupGdAlIaUUpRoFU3oA2gWR0DGUsBS75EddX2UKGgGaAloD0MIcxHfiVkKYUCUhpRSlGgVTegDaBZHQMZSxrp7kXF1fZQoaAZoCWgPQwjIQnQIHEliQJSGlFKUaBVN6ANoFkdAxlM9xm03O3V9lChoBmgJaA9DCBZod0ixvmRAlIaUUpRoFU3oA2gWR0DGU0e2Xsw+dX2UKGgGaAloD0MIA+li08ofaECUhpRSlGgVTegDaBZHQMZTcDjBEa51fZQoaAZoCWgPQwgmOPWB5PpiQJSGlFKUaBVN6ANoFkdAxlNv/WlMy3V9lChoBmgJaA9DCFsmw/F83WNAlIaUUpRoFU3oA2gWR0DGU++8M/hVdX2UKGgGaAloD0MIFokJangCaECUhpRSlGgVTegDaBZHQMZWeqoAGSp1fZQoaAZoCWgPQwhKQbeXNBhlQJSGlFKUaBVN6ANoFkdAxlaeq/dqL3V9lChoBmgJaA9DCEoMAiuHEGNAlIaUUpRoFU3oA2gWR0DGVsu2mYShdX2UKGgGaAloD0MIjnVxGw1AaECUhpRSlGgVTegDaBZHQMZXK5rYXft1fZQoaAZoCWgPQwil2TwOA2VnQJSGlFKUaBVN6ANoFkdAxleZVYISlHV9lChoBmgJaA9DCMHHYMVpcXFAlIaUUpRoFU0mAWgWR0DGWDbZezD5dX2UKGgGaAloD0MIUWfuIeEJZECUhpRSlGgVTegDaBZHQMZYf2qkuYh1fZQoaAZoCWgPQwhE393KEl1uQJSGlFKUaBVNcgJoFkdAxllqslLOA3V9lChoBmgJaA9DCL9+iA2W22dAlIaUUpRoFU3oA2gWR0DGWYR4wAU+dX2UKGgGaAloD0MItaZ5x+lvcUCUhpRSlGgVTc0BaBZHQMZZt11GLDR1fZQoaAZoCWgPQwjVzFoKSAppQJSGlFKUaBVN6ANoFkdAxloKoQWepXV9lChoBmgJaA9DCM6luKrsI2VAlIaUUpRoFU3oA2gWR0DGWytwxWT5dX2UKGgGaAloD0MISnoYWh0rZkCUhpRSlGgVTegDaBZHQMZbNZKvmo11fZQoaAZoCWgPQwg7NgLxutZkQJSGlFKUaBVN6ANoFkdAxls8EmICVHV9lChoBmgJaA9DCMfyrnoAdnFAlIaUUpRoFU1mA2gWR0DGW5vX/YJ3dX2UKGgGaAloD0MIBaInZVJRZECUhpRSlGgVTegDaBZHQMZbs4mb9ZR1fZQoaAZoCWgPQwi5iVqa20pnQJSGlFKUaBVN6ANoFkdAxlvlEuxrz3V9lChoBmgJaA9DCNAKDFndUmJAlIaUUpRoFU3oA2gWR0DGW+TJMg2ZdX2UKGgGaAloD0MIvi8uVemHcUCUhpRSlGgVTR0CaBZHQMZfA1W8yvd1fZQoaAZoCWgPQwi+2ebG9A5iQJSGlFKUaBVN6ANoFkdAxl8XKdxyXHV9lChoBmgJaA9DCAeWI2SglXBAlIaUUpRoFU02AWgWR0DGX2Cs0YTCdX2UKGgGaAloD0MI4/xNKEQ3X0CUhpRSlGgVTegDaBZHQMZfuv6be/J1fZQoaAZoCWgPQwghPNo4YkZpQJSGlFKUaBVN6ANoFkdAxmApmaH9FXV9lChoBmgJaA9DCE8EcR7OlmJAlIaUUpRoFU3oA2gWR0DGYMQ4CIUKdX2UKGgGaAloD0MI06QUdPvzZkCUhpRSlGgVTegDaBZHQMZhC8Nx2jh1fZQoaAZoCWgPQwhm3T8WoplhQJSGlFKUaBVN6ANoFkdAxmITDx9XtHV9lChoBmgJaA9DCKYMHNDSp19AlIaUUpRoFU3oA2gWR0DGYkv+ZPVNdX2UKGgGaAloD0MIkjtsIjODZUCUhpRSlGgVTegDaBZHQMZiqX1anrJ1fZQoaAZoCWgPQwjMfAc/cRBvQJSGlFKUaBVNfAJoFkdAxmOEnwXqJXV9lChoBmgJaA9DCBKGAUsuUGdAlIaUUpRoFU3oA2gWR0DGY9ZNqQA/dX2UKGgGaAloD0MISyGQS5xWY0CUhpRSlGgVTegDaBZHQMZj5jIq9Xd1fZQoaAZoCWgPQwh5XFSLCKFiQJSGlFKUaBVN6ANoFkdAxmREo99tuXV9lChoBmgJaA9DCKexvRZ0xWVAlIaUUpRoFU3oA2gWR0DGZFx3iaRZdX2UKGgGaAloD0MIxR9FnTkUaECUhpRSlGgVTegDaBZHQMZkirVFx4p1fZQoaAZoCWgPQwgoucMmMtRkQJSGlFKUaBVN6ANoFkdAxmSKWC2+f3V9lChoBmgJaA9DCJEPejYrYGdAlIaUUpRoFU3oA2gWR0DGZVSHdoFndX2UKGgGaAloD0MIdlQ1QdS8ZECUhpRSlGgVTegDaBZHQMZlbCh37k51fZQoaAZoCWgPQwhfmbfqugtnQJSGlFKUaBVN6ANoFkdAxmjm4EOiFnV9lChoBmgJaA9DCHgpdcm4LWBAlIaUUpRoFU3oA2gWR0DGaVdNg0CSdX2UKGgGaAloD0MI1QloIuw3ZkCUhpRSlGgVTegDaBZHQMZp57laKUF1fZQoaAZoCWgPQwhHOgMjL65mQJSGlFKUaBVN6ANoFkdAxmopRb8m8nV9lChoBmgJaA9DCAvxSLw8oGhAlIaUUpRoFU3oA2gWR0DGaxW0NSZSdX2UKGgGaAloD0MI2NXkKSuvZkCUhpRSlGgVTegDaBZHQMZrSr+o99t1fZQoaAZoCWgPQwhEaW/whfdmQJSGlFKUaBVN6ANoFkdAxmujIeYD1XV9lChoBmgJaA9DCFfMCG8PN2NAlIaUUpRoFU3oA2gWR0DGbHoVh1DCdX2UKGgGaAloD0MIj3Ba8KIGZUCUhpRSlGgVTegDaBZHQMZszIWP91l1fZQoaAZoCWgPQwhoQL0Ztc5hQJSGlFKUaBVN6ANoFkdAxmzc5WilBXV9lChoBmgJaA9DCAABa9UuOnBAlIaUUpRoFU3dAWgWR0DGbSg7q6e5dX2UKGgGaAloD0MItW/urx7sX0CUhpRSlGgVTegDaBZHQMZtQEGA09B1fZQoaAZoCWgPQwjuk6MAUUZmQJSGlFKUaBVN6ANoFkdAxm1XtbcGknV9lChoBmgJaA9DCIfFqGstxHJAlIaUUpRoFU3kA2gWR0DGbYCW/rSmdX2UKGgGaAloD0MIks8rnnqSZECUhpRSlGgVTegDaBZHQMZtheDWbw11fZQoaAZoCWgPQwjhQh7BDbJlQJSGlFKUaBVN6ANoFkdAxm5XvWH1vnV9lChoBmgJaA9DCAVqMXgYhGNAlIaUUpRoFU3oA2gWR0DGbmtIqbz9dX2UKGgGaAloD0MIn5JzYo91ZECUhpRSlGgVTegDaBZHQMZxbL61stV1fZQoaAZoCWgPQwizRGeZRY1oQJSGlFKUaBVN6ANoFkdAxnHmV0tAcHV9lChoBmgJaA9DCHSXxFkRl2VAlIaUUpRoFU3oA2gWR0DGco/7BO58dX2UKGgGaAloD0MIoz1eSIfvYUCUhpRSlGgVTegDaBZHQMZz8Iyj59F1fZQoaAZoCWgPQwgDJnDrbkJkQJSGlFKUaBVN6ANoFkdAxnQoXOW0JHV9lChoBmgJaA9DCAQg7urVMWhAlIaUUpRoFU3oA2gWR0DGdIZRdhRZdX2UKGgGaAloD0MIcokjD8RXcUCUhpRSlGgVTdwCaBZHQMZ0qc+7lJZ1fZQoaAZoCWgPQwimXyLeOrJfQJSGlFKUaBVN6ANoFkdAxnVVjbSJCXV9lChoBmgJaA9DCGKdKt8zWWJAlIaUUpRoFU3oA2gWR0DGdZ1/tpmFdX2UKGgGaAloD0MI4QuTqYLKZECUhpRSlGgVTegDaBZHQMZ1q6O5rgx1fZQoaAZoCWgPQwiAK9mxkRBiQJSGlFKUaBVN6ANoFkdAxnXtLFn7HnV9lChoBmgJaA9DCBaiQ+DIjmNAlIaUUpRoFU3oA2gWR0DGdgMCq6vrdX2UKGgGaAloD0MIRdrGnyiTYUCUhpRSlGgVTegDaBZHQMZ2GRh2GIt1fZQoaAZoCWgPQwh7Lei9MUdeQJSGlFKUaBVN6ANoFkdAxnZEv4dp7HV9lChoBmgJaA9DCLEyGvk8TmVAlIaUUpRoFU3oA2gWR0DGdwf2TPjXdX2UKGgGaAloD0MI9E9wsSJ1ZkCUhpRSlGgVTegDaBZHQMZ3GsabWmR1fZQoaAZoCWgPQwhrmQzHc3JnQJSGlFKUaBVN6ANoFkdAxnoPYcNpd3V9lChoBmgJaA9DCKaAtP+BP2ZAlIaUUpRoFU3oA2gWR0DGensRL9MsdX2UKGgGaAloD0MIv0UnS63gZkCUhpRSlGgVTegDaBZHQMZ7CDJuEVZ1fZQoaAZoCWgPQwgpd5/j425yQJSGlFKUaBVNAwJoFkdAxntNK7I1cnV9lChoBmgJaA9DCIzXvKozvGNAlIaUUpRoFU3oA2gWR0DGfCJ8neBQdX2UKGgGaAloD0MIcy7FVWW0Y0CUhpRSlGgVTegDaBZHQMZ8UXr+o991fZQoaAZoCWgPQwi+T1WhAelkQJSGlFKUaBVN6ANoFkdAxnyhnuiN83V9lChoBmgJaA9DCONve4LEZ2RAlIaUUpRoFU3oA2gWR0DGfMEByS3cdX2UKGgGaAloD0MIdGA5QgYpaECUhpRSlGgVTegDaBZHQMZ9TjjR2KV1fZQoaAZoCWgPQwhPAwZJnwFkQJSGlFKUaBVN6ANoFkdAxn2PKaoddXV9lChoBmgJaA9DCNfCLLTzXmZAlIaUUpRoFU3oA2gWR0DGfZujGkvcdX2UKGgGaAloD0MIXvdWJKb/ZECUhpRSlGgVTegDaBZHQMZ91a/IsAh1fZQoaAZoCWgPQwhHjQkxl3BhQJSGlFKUaBVN6ANoFkdAxn388J2MbXV9lChoBmgJaA9DCAowLH++OWhAlIaUUpRoFU3oA2gWR0DGfiVeIEbHdX2UKGgGaAloD0MIsrj/yPSPZkCUhpRSlGgVTegDaBZHQMZ+62TxG2F1fZQoaAZoCWgPQwgBGM+gIbRhQJSGlFKUaBVN6ANoFkdAxn8AHck+o3VlLg=="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 2444,
79
+ "n_steps": 1024,
80
+ "gamma": 0.9999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:69f16912ae8c9d53d6e1634fe860d608b32423f1425f9abfc8f91918b61128fd
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7bebacf48abfacdfd4c2b0abba1140f1992d78e37974813416daaa3e31325fcc
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.147+-x86_64-with-glibc2.27 #1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ Python: 3.8.16
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.0+cu116
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (200 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 260.6328215449778, "std_reward": 25.32507258164763, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-06T19:31:10.640748"}