Eksperymenty
commited on
Commit
•
5d43c87
1
Parent(s):
632b8c4
Upload PPO LunarLander-v2 trained agent
Browse files- README.md +36 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 166.55 +/- 36.69
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
26 |
+
|
27 |
+
## Usage (with Stable-baselines3)
|
28 |
+
TODO: Add your code
|
29 |
+
|
30 |
+
|
31 |
+
```python
|
32 |
+
from stable_baselines3 import ...
|
33 |
+
from huggingface_sb3 import load_from_hub
|
34 |
+
|
35 |
+
...
|
36 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f38482820e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3848282170>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3848282200>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3848282290>", "_build": "<function ActorCriticPolicy._build at 0x7f3848282320>", "forward": "<function ActorCriticPolicy.forward at 0x7f38482823b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3848282440>", "_predict": "<function ActorCriticPolicy._predict at 0x7f38482824d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3848282560>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f38482825f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3848282680>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f38482d4420>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1661598011.073778, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMAr1b425Sg/o730PdSPpb4+Pym+verRPQAAAAAAAAAAM24svjgS2LsDwwo7moaWOGycMj1vpCO6AACAPwAAgD+HVQS/w9MxvnpOrzq6I9A4/KzbPUf6GboAAIA/AACAPzPSyL2up/+4kK/Au//xoTjbOJs6CzIxOgAAgD8AAIA/5q2LPRSmzjld0ok7GhXdu/91XDu8VCc8AAAAAAAAAACW1pi+cR5PvYR3zLmdrpm40S2xPjhZDjkAAIA/AACAP0olcL6KeCk86DkBOwo85bi/06+9j0QXugAAgD8AAIA/k4VzvnaXbbzIClS6QQJXuJS4zD118Xk5AACAPwAAgD8agsm9Pf4JOgUK67tw4B44nAFHuTYEXbcAAIA/AACAPybS5j2FI5S5oSoJPIrEDjfxpwy6pLkMNgAAgD8AAIA/YOrEvlM/GT/Oqgm+NtWBvpftDz1I8Tq9AAAAAAAAAADD84M+dB+zPRZtBL7nL3G+r+7Tvarto7wAAAAAAAAAAJqe9zw2Uwq8iAwHO2UoezxalmE9Zj1TvQAAgD8AAIA/M41aPezwzT51fIw9ZkB2vjiRNT773XS9AAAAAAAAAABKwcQ+QzQyPW5mSTt6aBm8o/FHPUUU8bwAAAAAAACAP+IWl77zm3c/RhKVvhs9vL4Woda9mqM5vQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVcBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIiEhNu5guSECUhpRSlIwBbJRN6AOMAXSUR0B8Iuk690zTdX2UKGgGaAloD0MIt5c0RutwTkCUhpRSlGgVTegDaBZHQHwqDNdJJ5F1fZQoaAZoCWgPQwiZ1NAGYIBZQJSGlFKUaBVN6ANoFkdAfDm4xUNrkHV9lChoBmgJaA9DCHDP86eNyVdAlIaUUpRoFU3oA2gWR0B8TCPtD2J0dX2UKGgGaAloD0MISP5g4LkXV0CUhpRSlGgVTegDaBZHQHxSVD4QBgh1fZQoaAZoCWgPQwg/NzRlpys7QJSGlFKUaBVLx2gWR0B8XjzND+irdX2UKGgGaAloD0MIjjulg/WZX0CUhpRSlGgVTegDaBZHQHxkB2B8QZp1fZQoaAZoCWgPQwjUfQBSG9dgQJSGlFKUaBVN6ANoFkdAfGuCYCyQgnV9lChoBmgJaA9DCC2WIvlKHEtAlIaUUpRoFU3oA2gWR0B8eA7wKBuodX2UKGgGaAloD0MIK/cCs0JBUUCUhpRSlGgVTegDaBZHQHx7Q0j1PFh1fZQoaAZoCWgPQwi94xQdyfUuQJSGlFKUaBVL6mgWR0B8iSFZgXuWdX2UKGgGaAloD0MISGsMOiE6YkCUhpRSlGgVTegDaBZHQHy59wrDqGF1fZQoaAZoCWgPQwhJS+XtCCpaQJSGlFKUaBVN6ANoFkdAfMckzGgi/3V9lChoBmgJaA9DCF6ezhWl1lxAlIaUUpRoFU3oA2gWR0B83wMhHLA6dX2UKGgGaAloD0MITz3S4LZdV0CUhpRSlGgVTegDaBZHQHzm221D0Dl1fZQoaAZoCWgPQwgEritmBBJgQJSGlFKUaBVN6ANoFkdAfOwD9Oymh3V9lChoBmgJaA9DCG8u/rYnWkrAlIaUUpRoFUv9aBZHQH0LuhK15Sp1fZQoaAZoCWgPQwiY+nlTkZ9XQJSGlFKUaBVN6ANoFkdAfRpy8zyjHnV9lChoBmgJaA9DCD6WPnRBvl5AlIaUUpRoFU3oA2gWR0B9IeXRgJC0dX2UKGgGaAloD0MI9WiqJ/PfEMCUhpRSlGgVS/ZoFkdAfSdctGus93V9lChoBmgJaA9DCDRJLCl3RlZAlIaUUpRoFU3oA2gWR0B9eFQgs9SudX2UKGgGaAloD0MIfxMKEXCOVUCUhpRSlGgVTegDaBZHQH2Jp79hqj91fZQoaAZoCWgPQwgTgeofRMI9QJSGlFKUaBVL9mgWR0B9lumsNlRQdX2UKGgGaAloD0MIgNdnzvpNW0CUhpRSlGgVTegDaBZHQH2aU4//vOR1fZQoaAZoCWgPQwjE6SRbXcpCQJSGlFKUaBVN6ANoFkdAfawnK4hEB3V9lChoBmgJaA9DCNwtyQG7zFhAlIaUUpRoFU3oA2gWR0B9sb6ciGFjdX2UKGgGaAloD0MIUWfuIeG4WUCUhpRSlGgVTegDaBZHQH25YPPLPld1fZQoaAZoCWgPQwgQ5+EEpiVXQJSGlFKUaBVN6ANoFkdAfcV7N0NjLHV9lChoBmgJaA9DCMhCdAicjWBAlIaUUpRoFU3oA2gWR0B9yIlv60pmdX2UKGgGaAloD0MIVb5nJEJHP0CUhpRSlGgVS/loFkdAfdAmwaBI4HV9lChoBmgJaA9DCGQ6dHrelU5AlIaUUpRoFU3oA2gWR0B91XgKnei0dX2UKGgGaAloD0MIprVpbK/nQ8CUhpRSlGgVS/1oFkdAfeOwmVqveXV9lChoBmgJaA9DCCKOdXEbGUfAlIaUUpRoFUv+aBZHQH39be/Ho5h1fZQoaAZoCWgPQwj1geSdQyxTQJSGlFKUaBVN6ANoFkdAff6uG9HtnnV9lChoBmgJaA9DCJcfuMqTSmFAlIaUUpRoFU3oA2gWR0B+ISCJ40MxdX2UKGgGaAloD0MILubnhiZwYECUhpRSlGgVTegDaBZHQH4ul/pdKNB1fZQoaAZoCWgPQwi1+1WA75IwwJSGlFKUaBVL7mgWR0B+QAvTPSlWdX2UKGgGaAloD0MI0c5pFmiFUkCUhpRSlGgVTegDaBZHQH5lVBdD6WR1fZQoaAZoCWgPQwg7GLFPAI1VQJSGlFKUaBVN6ANoFkdAfm5PO6d1+3V9lChoBmgJaA9DCK5i8ZvCStQ/lIaUUpRoFU0JAWgWR0B+cl32VVxTdX2UKGgGaAloD0MI4X8r2bFhVkCUhpRSlGgVTegDaBZHQH501PrOZ9d1fZQoaAZoCWgPQwiOjxZnDJNhQJSGlFKUaBVN6ANoFkdAfnmvTw2ETXV9lChoBmgJaA9DCLMG76ty/19AlIaUUpRoFU3oA2gWR0B+2NGZuyeJdX2UKGgGaAloD0MIQiYZOQsYYUCUhpRSlGgVTegDaBZHQH7slQQ+UyJ1fZQoaAZoCWgPQwivITgu4yxUQJSGlFKUaBVN6ANoFkdAfwiVHFxXGXV9lChoBmgJaA9DCKkvSzs1WmBAlIaUUpRoFU3oA2gWR0B/ErzkIX0odX2UKGgGaAloD0MIQZyHE5gnY0CUhpRSlGgVTegDaBZHQH8l7212JSB1fZQoaAZoCWgPQwhH5/wUx6lbQJSGlFKUaBVN6ANoFkdAfzCOo5xR23V9lChoBmgJaA9DCNr+lZWmjWJAlIaUUpRoFU3oA2gWR0B/N0tapxWDdX2UKGgGaAloD0MIMPDce7gUI0CUhpRSlGgVTRcBaBZHQH88k52hZhd1fZQoaAZoCWgPQwiwPbMkQHZZQJSGlFKUaBVN6ANoFkdAf0k2R7qptXV9lChoBmgJaA9DCMlyEkpfICFAlIaUUpRoFUvuaBZHQH9TkAT7EYR1fZQoaAZoCWgPQwg/Gk6Zm85hQJSGlFKUaBVN6ANoFkdAf2ZXPJJXhnV9lChoBmgJaA9DCGWnH9RFgiTAlIaUUpRoFUvMaBZHQH+LZWNm16V1fZQoaAZoCWgPQwgs81Zdh55RwJSGlFKUaBVL/GgWR0B/jbKlpGnXdX2UKGgGaAloD0MIh8Woa23nYkCUhpRSlGgVTegDaBZHQH+X3Upd8iR1fZQoaAZoCWgPQwjEeTiB6dphQJSGlFKUaBVN6ANoFkdAf6iV0cOsk3V9lChoBmgJaA9DCI7onnWN42ZAlIaUUpRoFU2gAWgWR0B/riVB2OhkdX2UKGgGaAloD0MIWP58W7DuUUCUhpRSlGgVTegDaBZHQH/ItugpSaV1fZQoaAZoCWgPQwhk6q7sgrNhQJSGlFKUaBVN6ANoFkdAf9CDRtxdZHV9lChoBmgJaA9DCOxsyD8znVlAlIaUUpRoFU3oA2gWR0B/1BElVtGedX2UKGgGaAloD0MItAOuK2bIX0CUhpRSlGgVTegDaBZHQH/WKe05U991fZQoaAZoCWgPQwjtgsE1d5FeQJSGlFKUaBVN6ANoFkdAf9oouf29MHV9lChoBmgJaA9DCBh6xOi5IVlAlIaUUpRoFU3oA2gWR0CAGwlTm4iHdX2UKGgGaAloD0MIhh4xem4uWkCUhpRSlGgVTegDaBZHQIAvrSXt0FN1fZQoaAZoCWgPQwg+BitOtS4swJSGlFKUaBVL/2gWR0CAMb9gnc+JdX2UKGgGaAloD0MIf74tWKokWkCUhpRSlGgVTegDaBZHQIA9AnOSntR1fZQoaAZoCWgPQwgrGJXUiWZgQJSGlFKUaBVN6ANoFkdAgEIg13t8eHV9lChoBmgJaA9DCNB9ObNdkSjAlIaUUpRoFU1AAWgWR0CAQ/GBFuvVdX2UKGgGaAloD0MIUu3T8ZgEVkCUhpRSlGgVTegDaBZHQIBFTbah6B11fZQoaAZoCWgPQwj51/LK9WNTQJSGlFKUaBVN6ANoFkdAgFzG+TNdJXV9lChoBmgJaA9DCGO3zyozaUDAlIaUUpRoFUv7aBZHQIBiLeIl+mZ1fZQoaAZoCWgPQwgFqKlla0tYQJSGlFKUaBVN6ANoFkdAgG2r1dxAB3V9lChoBmgJaA9DCHzxRXs8TmVAlIaUUpRoFU3oA2gWR0CAbpjwQUYbdX2UKGgGaAloD0MIIlSp2QM4VkCUhpRSlGgVTegDaBZHQIBy/1Hvtt11fZQoaAZoCWgPQwietkYEY6NiQJSGlFKUaBVN6ANoFkdAgHqWLYPGyXV9lChoBmgJaA9DCCy69ZoeaVpAlIaUUpRoFU3oA2gWR0CAfR2xptaZdX2UKGgGaAloD0MIEynN5nGYIcCUhpRSlGgVS+9oFkdAgIChnjABUHV9lChoBmgJaA9DCMPvplv2K2FAlIaUUpRoFU3oA2gWR0CAiYYXO4XodX2UKGgGaAloD0MI6E8b1emtXkCUhpRSlGgVTegDaBZHQICM9uLrHEN1fZQoaAZoCWgPQwh/aydKQpVTQJSGlFKUaBVN6ANoFkdAgI6LleWv83V9lChoBmgJaA9DCHyd1JelT1xAlIaUUpRoFU3oA2gWR0CAj3aC+UQkdX2UKGgGaAloD0MImNu93CeDQsCUhpRSlGgVS/poFkdAgJHikwevIXV9lChoBmgJaA9DCGAeMuVDeCfAlIaUUpRoFU0iAWgWR0CAwrq7iADrdX2UKGgGaAloD0MIJlMFo5LCZUCUhpRSlGgVTf4CaBZHQIDIbQw9JSR1fZQoaAZoCWgPQwh2U8prpaFoQJSGlFKUaBVN/gFoFkdAgNIqT8pCr3V9lChoBmgJaA9DCIPfhhivKRpAlIaUUpRoFU0PAWgWR0CA05BOYYzjdX2UKGgGaAloD0MIF9UiopjPY0CUhpRSlGgVTegDaBZHQIDUxtxdY4h1fZQoaAZoCWgPQwhOKa+V0IJSQJSGlFKUaBVN6ANoFkdAgNc6X8fmtHV9lChoBmgJaA9DCCdO7neoF2BAlIaUUpRoFU3oA2gWR0CA423x4IKMdX2UKGgGaAloD0MIh9uhYTGbWkCUhpRSlGgVTegDaBZHQIDrH336AOJ1fZQoaAZoCWgPQwivWwTG+rdbQJSGlFKUaBVN6ANoFkdAgQQTUqhDgXV9lChoBmgJaA9DCBVSflLt11pAlIaUUpRoFU3oA2gWR0CBGGgTyrggdX2UKGgGaAloD0MIOBCSBUyg8z+UhpRSlGgVS99oFkdAgSVpcPe54HV9lChoBmgJaA9DCJ4Hd2dtgWBAlIaUUpRoFU3oA2gWR0CBKhmp2ll9dX2UKGgGaAloD0MImDRG66j8UECUhpRSlGgVTegDaBZHQIEuPkzXSSh1fZQoaAZoCWgPQwgDCYofY1JXQJSGlFKUaBVN6ANoFkdAgTelzltCRnV9lChoBmgJaA9DCKwBSkONUl9AlIaUUpRoFU3oA2gWR0CBPatq59VndX2UKGgGaAloD0MI7mDEPgHUXkCUhpRSlGgVTegDaBZHQIE+yG8Empl1fZQoaAZoCWgPQwgw8Nx7uGdcQJSGlFKUaBVN6ANoFkdAgUGzeGfwqnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2b6d78f8731b51889ffa1dbc53e0f5f6b0e6e9003ee6bd4e7cbe4be01fb61631
|
3 |
+
size 147131
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f38482820e0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3848282170>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3848282200>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3848282290>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f3848282320>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f38482823b0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3848282440>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f38482824d0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3848282560>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f38482825f0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3848282680>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f38482d4420>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 507904,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1661598011.073778,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMAr1b425Sg/o730PdSPpb4+Pym+verRPQAAAAAAAAAAM24svjgS2LsDwwo7moaWOGycMj1vpCO6AACAPwAAgD+HVQS/w9MxvnpOrzq6I9A4/KzbPUf6GboAAIA/AACAPzPSyL2up/+4kK/Au//xoTjbOJs6CzIxOgAAgD8AAIA/5q2LPRSmzjld0ok7GhXdu/91XDu8VCc8AAAAAAAAAACW1pi+cR5PvYR3zLmdrpm40S2xPjhZDjkAAIA/AACAP0olcL6KeCk86DkBOwo85bi/06+9j0QXugAAgD8AAIA/k4VzvnaXbbzIClS6QQJXuJS4zD118Xk5AACAPwAAgD8agsm9Pf4JOgUK67tw4B44nAFHuTYEXbcAAIA/AACAPybS5j2FI5S5oSoJPIrEDjfxpwy6pLkMNgAAgD8AAIA/YOrEvlM/GT/Oqgm+NtWBvpftDz1I8Tq9AAAAAAAAAADD84M+dB+zPRZtBL7nL3G+r+7Tvarto7wAAAAAAAAAAJqe9zw2Uwq8iAwHO2UoezxalmE9Zj1TvQAAgD8AAIA/M41aPezwzT51fIw9ZkB2vjiRNT773XS9AAAAAAAAAABKwcQ+QzQyPW5mSTt6aBm8o/FHPUUU8bwAAAAAAACAP+IWl77zm3c/RhKVvhs9vL4Woda9mqM5vQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVcBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIiEhNu5guSECUhpRSlIwBbJRN6AOMAXSUR0B8Iuk690zTdX2UKGgGaAloD0MIt5c0RutwTkCUhpRSlGgVTegDaBZHQHwqDNdJJ5F1fZQoaAZoCWgPQwiZ1NAGYIBZQJSGlFKUaBVN6ANoFkdAfDm4xUNrkHV9lChoBmgJaA9DCHDP86eNyVdAlIaUUpRoFU3oA2gWR0B8TCPtD2J0dX2UKGgGaAloD0MISP5g4LkXV0CUhpRSlGgVTegDaBZHQHxSVD4QBgh1fZQoaAZoCWgPQwg/NzRlpys7QJSGlFKUaBVLx2gWR0B8XjzND+irdX2UKGgGaAloD0MIjjulg/WZX0CUhpRSlGgVTegDaBZHQHxkB2B8QZp1fZQoaAZoCWgPQwjUfQBSG9dgQJSGlFKUaBVN6ANoFkdAfGuCYCyQgnV9lChoBmgJaA9DCC2WIvlKHEtAlIaUUpRoFU3oA2gWR0B8eA7wKBuodX2UKGgGaAloD0MIK/cCs0JBUUCUhpRSlGgVTegDaBZHQHx7Q0j1PFh1fZQoaAZoCWgPQwi94xQdyfUuQJSGlFKUaBVL6mgWR0B8iSFZgXuWdX2UKGgGaAloD0MISGsMOiE6YkCUhpRSlGgVTegDaBZHQHy59wrDqGF1fZQoaAZoCWgPQwhJS+XtCCpaQJSGlFKUaBVN6ANoFkdAfMckzGgi/3V9lChoBmgJaA9DCF6ezhWl1lxAlIaUUpRoFU3oA2gWR0B83wMhHLA6dX2UKGgGaAloD0MITz3S4LZdV0CUhpRSlGgVTegDaBZHQHzm221D0Dl1fZQoaAZoCWgPQwgEritmBBJgQJSGlFKUaBVN6ANoFkdAfOwD9Oymh3V9lChoBmgJaA9DCG8u/rYnWkrAlIaUUpRoFUv9aBZHQH0LuhK15Sp1fZQoaAZoCWgPQwiY+nlTkZ9XQJSGlFKUaBVN6ANoFkdAfRpy8zyjHnV9lChoBmgJaA9DCD6WPnRBvl5AlIaUUpRoFU3oA2gWR0B9IeXRgJC0dX2UKGgGaAloD0MI9WiqJ/PfEMCUhpRSlGgVS/ZoFkdAfSdctGus93V9lChoBmgJaA9DCDRJLCl3RlZAlIaUUpRoFU3oA2gWR0B9eFQgs9SudX2UKGgGaAloD0MIfxMKEXCOVUCUhpRSlGgVTegDaBZHQH2Jp79hqj91fZQoaAZoCWgPQwgTgeofRMI9QJSGlFKUaBVL9mgWR0B9lumsNlRQdX2UKGgGaAloD0MIgNdnzvpNW0CUhpRSlGgVTegDaBZHQH2aU4//vOR1fZQoaAZoCWgPQwjE6SRbXcpCQJSGlFKUaBVN6ANoFkdAfawnK4hEB3V9lChoBmgJaA9DCNwtyQG7zFhAlIaUUpRoFU3oA2gWR0B9sb6ciGFjdX2UKGgGaAloD0MIUWfuIeG4WUCUhpRSlGgVTegDaBZHQH25YPPLPld1fZQoaAZoCWgPQwgQ5+EEpiVXQJSGlFKUaBVN6ANoFkdAfcV7N0NjLHV9lChoBmgJaA9DCMhCdAicjWBAlIaUUpRoFU3oA2gWR0B9yIlv60pmdX2UKGgGaAloD0MIVb5nJEJHP0CUhpRSlGgVS/loFkdAfdAmwaBI4HV9lChoBmgJaA9DCGQ6dHrelU5AlIaUUpRoFU3oA2gWR0B91XgKnei0dX2UKGgGaAloD0MIprVpbK/nQ8CUhpRSlGgVS/1oFkdAfeOwmVqveXV9lChoBmgJaA9DCCKOdXEbGUfAlIaUUpRoFUv+aBZHQH39be/Ho5h1fZQoaAZoCWgPQwj1geSdQyxTQJSGlFKUaBVN6ANoFkdAff6uG9HtnnV9lChoBmgJaA9DCJcfuMqTSmFAlIaUUpRoFU3oA2gWR0B+ISCJ40MxdX2UKGgGaAloD0MILubnhiZwYECUhpRSlGgVTegDaBZHQH4ul/pdKNB1fZQoaAZoCWgPQwi1+1WA75IwwJSGlFKUaBVL7mgWR0B+QAvTPSlWdX2UKGgGaAloD0MI0c5pFmiFUkCUhpRSlGgVTegDaBZHQH5lVBdD6WR1fZQoaAZoCWgPQwg7GLFPAI1VQJSGlFKUaBVN6ANoFkdAfm5PO6d1+3V9lChoBmgJaA9DCK5i8ZvCStQ/lIaUUpRoFU0JAWgWR0B+cl32VVxTdX2UKGgGaAloD0MI4X8r2bFhVkCUhpRSlGgVTegDaBZHQH501PrOZ9d1fZQoaAZoCWgPQwiOjxZnDJNhQJSGlFKUaBVN6ANoFkdAfnmvTw2ETXV9lChoBmgJaA9DCLMG76ty/19AlIaUUpRoFU3oA2gWR0B+2NGZuyeJdX2UKGgGaAloD0MIQiYZOQsYYUCUhpRSlGgVTegDaBZHQH7slQQ+UyJ1fZQoaAZoCWgPQwivITgu4yxUQJSGlFKUaBVN6ANoFkdAfwiVHFxXGXV9lChoBmgJaA9DCKkvSzs1WmBAlIaUUpRoFU3oA2gWR0B/ErzkIX0odX2UKGgGaAloD0MIQZyHE5gnY0CUhpRSlGgVTegDaBZHQH8l7212JSB1fZQoaAZoCWgPQwhH5/wUx6lbQJSGlFKUaBVN6ANoFkdAfzCOo5xR23V9lChoBmgJaA9DCNr+lZWmjWJAlIaUUpRoFU3oA2gWR0B/N0tapxWDdX2UKGgGaAloD0MIMPDce7gUI0CUhpRSlGgVTRcBaBZHQH88k52hZhd1fZQoaAZoCWgPQwiwPbMkQHZZQJSGlFKUaBVN6ANoFkdAf0k2R7qptXV9lChoBmgJaA9DCMlyEkpfICFAlIaUUpRoFUvuaBZHQH9TkAT7EYR1fZQoaAZoCWgPQwg/Gk6Zm85hQJSGlFKUaBVN6ANoFkdAf2ZXPJJXhnV9lChoBmgJaA9DCGWnH9RFgiTAlIaUUpRoFUvMaBZHQH+LZWNm16V1fZQoaAZoCWgPQwgs81Zdh55RwJSGlFKUaBVL/GgWR0B/jbKlpGnXdX2UKGgGaAloD0MIh8Woa23nYkCUhpRSlGgVTegDaBZHQH+X3Upd8iR1fZQoaAZoCWgPQwjEeTiB6dphQJSGlFKUaBVN6ANoFkdAf6iV0cOsk3V9lChoBmgJaA9DCI7onnWN42ZAlIaUUpRoFU2gAWgWR0B/riVB2OhkdX2UKGgGaAloD0MIWP58W7DuUUCUhpRSlGgVTegDaBZHQH/ItugpSaV1fZQoaAZoCWgPQwhk6q7sgrNhQJSGlFKUaBVN6ANoFkdAf9CDRtxdZHV9lChoBmgJaA9DCOxsyD8znVlAlIaUUpRoFU3oA2gWR0B/1BElVtGedX2UKGgGaAloD0MItAOuK2bIX0CUhpRSlGgVTegDaBZHQH/WKe05U991fZQoaAZoCWgPQwjtgsE1d5FeQJSGlFKUaBVN6ANoFkdAf9oouf29MHV9lChoBmgJaA9DCBh6xOi5IVlAlIaUUpRoFU3oA2gWR0CAGwlTm4iHdX2UKGgGaAloD0MIhh4xem4uWkCUhpRSlGgVTegDaBZHQIAvrSXt0FN1fZQoaAZoCWgPQwg+BitOtS4swJSGlFKUaBVL/2gWR0CAMb9gnc+JdX2UKGgGaAloD0MIf74tWKokWkCUhpRSlGgVTegDaBZHQIA9AnOSntR1fZQoaAZoCWgPQwgrGJXUiWZgQJSGlFKUaBVN6ANoFkdAgEIg13t8eHV9lChoBmgJaA9DCNB9ObNdkSjAlIaUUpRoFU1AAWgWR0CAQ/GBFuvVdX2UKGgGaAloD0MIUu3T8ZgEVkCUhpRSlGgVTegDaBZHQIBFTbah6B11fZQoaAZoCWgPQwj51/LK9WNTQJSGlFKUaBVN6ANoFkdAgFzG+TNdJXV9lChoBmgJaA9DCGO3zyozaUDAlIaUUpRoFUv7aBZHQIBiLeIl+mZ1fZQoaAZoCWgPQwgFqKlla0tYQJSGlFKUaBVN6ANoFkdAgG2r1dxAB3V9lChoBmgJaA9DCHzxRXs8TmVAlIaUUpRoFU3oA2gWR0CAbpjwQUYbdX2UKGgGaAloD0MIIlSp2QM4VkCUhpRSlGgVTegDaBZHQIBy/1Hvtt11fZQoaAZoCWgPQwietkYEY6NiQJSGlFKUaBVN6ANoFkdAgHqWLYPGyXV9lChoBmgJaA9DCCy69ZoeaVpAlIaUUpRoFU3oA2gWR0CAfR2xptaZdX2UKGgGaAloD0MIEynN5nGYIcCUhpRSlGgVS+9oFkdAgIChnjABUHV9lChoBmgJaA9DCMPvplv2K2FAlIaUUpRoFU3oA2gWR0CAiYYXO4XodX2UKGgGaAloD0MI6E8b1emtXkCUhpRSlGgVTegDaBZHQICM9uLrHEN1fZQoaAZoCWgPQwh/aydKQpVTQJSGlFKUaBVN6ANoFkdAgI6LleWv83V9lChoBmgJaA9DCHyd1JelT1xAlIaUUpRoFU3oA2gWR0CAj3aC+UQkdX2UKGgGaAloD0MImNu93CeDQsCUhpRSlGgVS/poFkdAgJHikwevIXV9lChoBmgJaA9DCGAeMuVDeCfAlIaUUpRoFU0iAWgWR0CAwrq7iADrdX2UKGgGaAloD0MIJlMFo5LCZUCUhpRSlGgVTf4CaBZHQIDIbQw9JSR1fZQoaAZoCWgPQwh2U8prpaFoQJSGlFKUaBVN/gFoFkdAgNIqT8pCr3V9lChoBmgJaA9DCIPfhhivKRpAlIaUUpRoFU0PAWgWR0CA05BOYYzjdX2UKGgGaAloD0MIF9UiopjPY0CUhpRSlGgVTegDaBZHQIDUxtxdY4h1fZQoaAZoCWgPQwhOKa+V0IJSQJSGlFKUaBVN6ANoFkdAgNc6X8fmtHV9lChoBmgJaA9DCCdO7neoF2BAlIaUUpRoFU3oA2gWR0CA423x4IKMdX2UKGgGaAloD0MIh9uhYTGbWkCUhpRSlGgVTegDaBZHQIDrH336AOJ1fZQoaAZoCWgPQwivWwTG+rdbQJSGlFKUaBVN6ANoFkdAgQQTUqhDgXV9lChoBmgJaA9DCBVSflLt11pAlIaUUpRoFU3oA2gWR0CBGGgTyrggdX2UKGgGaAloD0MIOBCSBUyg8z+UhpRSlGgVS99oFkdAgSVpcPe54HV9lChoBmgJaA9DCJ4Hd2dtgWBAlIaUUpRoFU3oA2gWR0CBKhmp2ll9dX2UKGgGaAloD0MImDRG66j8UECUhpRSlGgVTegDaBZHQIEuPkzXSSh1fZQoaAZoCWgPQwgDCYofY1JXQJSGlFKUaBVN6ANoFkdAgTelzltCRnV9lChoBmgJaA9DCKwBSkONUl9AlIaUUpRoFU3oA2gWR0CBPatq59VndX2UKGgGaAloD0MI7mDEPgHUXkCUhpRSlGgVTegDaBZHQIE+yG8Empl1fZQoaAZoCWgPQwgw8Nx7uGdcQJSGlFKUaBVN6ANoFkdAgUGzeGfwqnVlLg=="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 124,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c0c70bd6d723b36856ffb854f6acb2ebf501421cd5670be6453b1e1612fb306d
|
3 |
+
size 87865
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8d6448c294a19046786752693f90fb0df2573a8ded97bdb68da6385c2b1beb70
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.6.0
|
4 |
+
PyTorch: 1.12.1+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (220 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 166.55230230231672, "std_reward": 36.68796928224587, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-08-27T11:10:57.497029"}
|