Commit
·
9c70041
1
Parent(s):
b9a3e4c
Upload best PPO LunarLander-v2 agent (tuned with Optuna).
Browse files- PPO-LunarLander-v2.zip +3 -0
- PPO-LunarLander-v2/_stable_baselines3_version +1 -0
- PPO-LunarLander-v2/data +94 -0
- PPO-LunarLander-v2/policy.optimizer.pth +3 -0
- PPO-LunarLander-v2/policy.pth +3 -0
- PPO-LunarLander-v2/pytorch_variables.pth +3 -0
- PPO-LunarLander-v2/system_info.txt +7 -0
- README.md +1 -1
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
PPO-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b5d873846fbf4ff0528c7990d8f0187426888283a723ec0c7d92380c8a99d730
|
3 |
+
size 147155
|
PPO-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.0
|
PPO-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fb2fd6825f0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb2fd682680>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb2fd682710>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb2fd6827a0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fb2fd682830>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fb2fd6828c0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb2fd682950>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fb2fd6829e0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb2fd682a70>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb2fd682b00>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb2fd682b90>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fb2fd6cbb40>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 1622016,
|
46 |
+
"_total_timesteps": 1619666,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1662212008.9638572,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAAjWOLveESh7rSHoU21dWGMfixBDsuwJ21AACAPwAAgD9NPSw9Hxqzuz4/Xr0iU7s839gEPedZnb0AAIA/AACAP/Nfkz32TyU9MglavZFmkL4FZ2U6KF+VvAAAAAAAAAAAM7PzOoV7h7smYB+8oB+yPJjA2DzGxJa9AACAPwAAgD/NUno+q9zpPvIUw74vrve+L6+SPZqEOb4AAAAAAAAAAGavMr4cnXW8GrpSvMeau7oVI+A9R6aVOwAAgD8AAIA/zcT9vClISro5OSQ8YDe3tKwspjoYxoizAAAAAAAAAAANzqm+KlsPP5ndmb4XdTi/EH25vpEtoD0AAAAAAAAAAPOlmD15a6Q+gUoqvsMYxL67bwy9tXNGvQAAAAAAAAAA2nyiPVz7arqQXSGzziEhrppnY7tKDMozAACAPwAAgD8aSnq+LB9LPht9WT72q5u+tIWcvePcqD0AAAAAAAAAANp74T0LGFY/ymLpPQ2tFb+tBCk+vnEROgAAAAAAAAAAMwL0PN9OoD+iFfo90g8bv0xqxzzKlgE+AAAAAAAAAAAAuMY71nexP7K3CT2sb4S+EMiwu9ATsTwAAAAAAAAAAKa5xD108So+NzMKvvTgrL7J9Li71okCPAAAAAAAAAAAmr1/PMOUBLxO3N+8rHEZPRngZz0rbvq9AACAPwAAgD+UdJRiLg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.001450916423509474,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gASVJxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI4umVsgyZb0CUhpRSlIwBbJRLtowBdJRHQNEbDdOmBOJ1fZQoaAZoCWgPQwi7RPXWwLxzQJSGlFKUaBVL3mgWR0DRGxhn+Q2ddX2UKGgGaAloD0MICwith++tcUCUhpRSlGgVS/NoFkdA0Rsek8Rtg3V9lChoBmgJaA9DCFa6u85GL3NAlIaUUpRoFU1pAmgWR0DRGzAqbz9TdX2UKGgGaAloD0MIu5f75GiacECUhpRSlGgVS8loFkdA0RsyBzmwJXV9lChoBmgJaA9DCD+RJ0kXTnFAlIaUUpRoFUu8aBZHQNEbNkyxiXp1fZQoaAZoCWgPQwiZuFUQA69CQJSGlFKUaBVLeGgWR0DRGzrdM0xedX2UKGgGaAloD0MI1lQWhV1cYUCUhpRSlGgVTegDaBZHQNEbR8xj8UF1fZQoaAZoCWgPQwh7Z7RViWRzQJSGlFKUaBVLz2gWR0DRG1fltCRfdX2UKGgGaAloD0MI/fohNljgR0CUhpRSlGgVS5RoFkdA0RtZqwQlKXV9lChoBmgJaA9DCK9gG/Gke3BAlIaUUpRoFUvPaBZHQNEbXi/Glyl1fZQoaAZoCWgPQwgknYGRF95xQJSGlFKUaBVL3WgWR0DRG2UH0K7adX2UKGgGaAloD0MIVS+/0+Qrb0CUhpRSlGgVS9NoFkdA0Rtn6X0GvHV9lChoBmgJaA9DCOZatADtknBAlIaUUpRoFUvqaBZHQNEbahW1c+t1fZQoaAZoCWgPQwgMA5ZcxURvQJSGlFKUaBVL2GgWR0DRG2vqnm7rdX2UKGgGaAloD0MIBDqTNlUBb0CUhpRSlGgVS8xoFkdA0Rt2FjurqHV9lChoBmgJaA9DCKAZxAd2RHJAlIaUUpRoFUu2aBZHQNEbfi75Ec91fZQoaAZoCWgPQwjarPpc7ZxxQJSGlFKUaBVLs2gWR0DRG4D+wTufdX2UKGgGaAloD0MIJnFWRI25cUCUhpRSlGgVS9JoFkdA0RuH+aScLHV9lChoBmgJaA9DCAiUTbkCnXFAlIaUUpRoFUvUaBZHQNEbn4XoC+11fZQoaAZoCWgPQwjCvwgas7pyQJSGlFKUaBVL8mgWR0DRG6AM7U5NdX2UKGgGaAloD0MIrfpcbYWDc0CUhpRSlGgVS7BoFkdA0Rut0PpY93V9lChoBmgJaA9DCKkz95AwwHBAlIaUUpRoFUu4aBZHQNEbtPNZ/1B1fZQoaAZoCWgPQwh6jPLMy2ZxQJSGlFKUaBVL3GgWR0DRG7ZmCiAUdX2UKGgGaAloD0MIy7p/LAQBdECUhpRSlGgVS+toFkdA0RvBdVvMr3V9lChoBmgJaA9DCMssQrGVf25AlIaUUpRoFUvTaBZHQNEbw1KXfIl1fZQoaAZoCWgPQwioOA68WnxdQJSGlFKUaBVN6ANoFkdA0RvESOR1YHV9lChoBmgJaA9DCCofgqrR8HNAlIaUUpRoFUvoaBZHQNEbzeI/JNl1fZQoaAZoCWgPQwirB8xDpn1uQJSGlFKUaBVLzGgWR0DRG9W5nUUgdX2UKGgGaAloD0MIF9aNdwcycUCUhpRSlGgVS89oFkdA0RvZzHjp93V9lChoBmgJaA9DCCwrTUoBsnJAlIaUUpRoFUvwaBZHQNEb2+YtxuN1fZQoaAZoCWgPQwieQq7U8z1zQJSGlFKUaBVNOwFoFkdA0Rvcse4kNXV9lChoBmgJaA9DCO4JEtsdYXNAlIaUUpRoFUvzaBZHQNEdcQLZzxR1fZQoaAZoCWgPQwiERrBxvR5wQJSGlFKUaBVLvmgWR0DRHX6TyJ9BdX2UKGgGaAloD0MIyR8MPDcwc0CUhpRSlGgVS+BoFkdA0R1+/0/W2HV9lChoBmgJaA9DCCYbD7aYgHFAlIaUUpRoFUvlaBZHQNEdgVLvkR11fZQoaAZoCWgPQwh5ymq63gBzQJSGlFKUaBVLxmgWR0DRHYhKAavSdX2UKGgGaAloD0MIK061FmbtcECUhpRSlGgVS8JoFkdA0R2QKIBRynV9lChoBmgJaA9DCNgLBWxHe3JAlIaUUpRoFUvBaBZHQNEdkhFqi491fZQoaAZoCWgPQwhbQj7oGUVxQJSGlFKUaBVL6WgWR0DRHZRGH58CdX2UKGgGaAloD0MINSTusTRTcUCUhpRSlGgVS7VoFkdA0R2Wej2zwHV9lChoBmgJaA9DCFTjpZtEXnJAlIaUUpRoFUvfaBZHQNEdnAJ9iMJ1fZQoaAZoCWgPQwhBDd/COttuQJSGlFKUaBVL1GgWR0DRHak6Mir1dX2UKGgGaAloD0MI0Oy6t6KPYUCUhpRSlGgVTegDaBZHQNEdrAHiWE91fZQoaAZoCWgPQwgTm49rQ5hwQJSGlFKUaBVL0mgWR0DRHaxUGVzIdX2UKGgGaAloD0MIyjSaXEzVcECUhpRSlGgVS/BoFkdA0R25O8Cgb3V9lChoBmgJaA9DCCDwwADCSXBAlIaUUpRoFUv3aBZHQNEdvJJCjUN1fZQoaAZoCWgPQwiYpDLFHLRwQJSGlFKUaBVLwWgWR0DRHci4z7/GdX2UKGgGaAloD0MI6WD9n8PGc0CUhpRSlGgVS/ZoFkdA0R3ND0UXYXV9lChoBmgJaA9DCJoIG56eknNAlIaUUpRoFUu7aBZHQNEdzeAI6bR1fZQoaAZoCWgPQwhPyqSGdpxwQJSGlFKUaBVLw2gWR0DRHdiKyfL+dX2UKGgGaAloD0MID18mipBsc0CUhpRSlGgVS/doFkdA0R3aZVGTcXV9lChoBmgJaA9DCOaw+45hzm5AlIaUUpRoFUvHaBZHQNEd3ht52Qp1fZQoaAZoCWgPQwjedTbkX2ZwQJSGlFKUaBVLwmgWR0DRHd6TfR/mdX2UKGgGaAloD0MIgXnIlA8eUECUhpRSlGgVS5JoFkdA0R3hxMWXTnV9lChoBmgJaA9DCKQ4Rx1dH3FAlIaUUpRoFUvjaBZHQNEd5ewC8vp1fZQoaAZoCWgPQwjdI5ur5pFwQJSGlFKUaBVL12gWR0DRHewQoTf0dX2UKGgGaAloD0MI9wSJ7e6KckCUhpRSlGgVTYEDaBZHQNEd8X1e0HB1fZQoaAZoCWgPQwi+E7NeDA1yQJSGlFKUaBVLymgWR0DRHfPOmixndX2UKGgGaAloD0MI3zE89rORc0CUhpRSlGgVS/VoFkdA0R4FqL0jDHV9lChoBmgJaA9DCAETuHU3iHBAlIaUUpRoFUvNaBZHQNEeB0LH+611fZQoaAZoCWgPQwj0Fg/vOUxOQJSGlFKUaBVLq2gWR0DRHhdhhH9WdX2UKGgGaAloD0MIvhb03lgockCUhpRSlGgVS+JoFkdA0R4cuieum3V9lChoBmgJaA9DCFtdTgnIp3BAlIaUUpRoFUvaaBZHQNEeHfq5byJ1fZQoaAZoCWgPQwhAhLhydmRxQJSGlFKUaBVLxWgWR0DRHiOK64DtdX2UKGgGaAloD0MIGmoUkkyIcUCUhpRSlGgVS8FoFkdA0R4qGr0aqHV9lChoBmgJaA9DCG/ZIf5h80dAlIaUUpRoFUuZaBZHQNEeLdFa0Qd1fZQoaAZoCWgPQwiSkbOwZyJxQJSGlFKUaBVL3GgWR0DRHjEWrOqvdX2UKGgGaAloD0MIONibGJKPckCUhpRSlGgVS+xoFkdA0R5AgjyFwnV9lChoBmgJaA9DCAkX8gjuY3NAlIaUUpRoFUvgaBZHQNEeQimhufp1fZQoaAZoCWgPQwhSDmYT4NVzQJSGlFKUaBVNRgFoFkdA0R5KGZuyeXV9lChoBmgJaA9DCLyUumRcOHNAlIaUUpRoFUvyaBZHQNEeTzTfBN51fZQoaAZoCWgPQwjAQBAggxNwQJSGlFKUaBVL5mgWR0DRHmJyuIRAdX2UKGgGaAloD0MImRBzSdWaR0CUhpRSlGgVS5JoFkdA0R5mee4Cp3V9lChoBmgJaA9DCIofY+5aXG5AlIaUUpRoFUvJaBZHQNEecE3wTdt1fZQoaAZoCWgPQwiGV5I8lyFxQJSGlFKUaBVLz2gWR0DRHnRTho/SdX2UKGgGaAloD0MIDWyVYDE4dECUhpRSlGgVTRIBaBZHQNEeeDqv/zd1fZQoaAZoCWgPQwhM4NbdfJtzQJSGlFKUaBVL8GgWR0DRHnwOOKfndX2UKGgGaAloD0MIAwmKH+MxckCUhpRSlGgVS9RoFkdA0R59TyJ9A3V9lChoBmgJaA9DCK1p3nGKxXBAlIaUUpRoFUu9aBZHQNEefje9Ba91fZQoaAZoCWgPQwhJLCl3H59yQJSGlFKUaBVLumgWR0DRHoAZm7J5dX2UKGgGaAloD0MI/S/XogU+c0CUhpRSlGgVTasCaBZHQNEeh/5HmRx1fZQoaAZoCWgPQwhvufqxSadyQJSGlFKUaBVLzGgWR0DRHpUXizcAdX2UKGgGaAloD0MIGLFPAMVrbUCUhpRSlGgVS8poFkdA0R6V8dPtUnV9lChoBmgJaA9DCOiC+pY5NXJAlIaUUpRoFU3mAWgWR0DRHp6yOaOQdX2UKGgGaAloD0MI5SfVPl28ckCUhpRSlGgVS9BoFkdA0R6f1aGHpXV9lChoBmgJaA9DCLUX0XZMvm5AlIaUUpRoFUvSaBZHQNEepLQgLZ11fZQoaAZoCWgPQwgEHhhA+E5xQJSGlFKUaBVL0mgWR0DRHrXLbHp9dX2UKGgGaAloD0MIpkdTPZkDcUCUhpRSlGgVS8poFkdA0R62T1CgLHV9lChoBmgJaA9DCEDBxYrae3JAlIaUUpRoFUu+aBZHQNEeuXk1dgR1fZQoaAZoCWgPQwifAIqRJTZSQJSGlFKUaBVLtmgWR0DRHr/DvVmSdX2UKGgGaAloD0MIlNv2PaqmcECUhpRSlGgVS8toFkdA0R7Ep1zQu3V9lChoBmgJaA9DCAOZnUUvu3JAlIaUUpRoFUvJaBZHQNEeyA1vVEx1fZQoaAZoCWgPQwhT51HxP0ByQJSGlFKUaBVLxGgWR0DRHsjiLl3hdX2UKGgGaAloD0MIq3mOyHfBcUCUhpRSlGgVS7RoFkdA0R7KvVmSQ3V9lChoBmgJaA9DCHy1ozjH/W9AlIaUUpRoFUvxaBZHQNEez6IBRyh1fZQoaAZoCWgPQwjG+gYm92FzQJSGlFKUaBVLxmgWR0DRHt7opx3ndX2UKGgGaAloD0MI9WVpp6auckCUhpRSlGgVS71oFkdA0R7kWBjFynV9lChoBmgJaA9DCNv3qL9eZT9AlIaUUpRoFUtcaBZHQNEe7rBKtgd1fZQoaAZoCWgPQwgnUMQiRupxQJSGlFKUaBVL8mgWR0DRHvDqZ+hHdWUu"
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 495,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.9925930803547798,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 5,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
PPO-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fe6adfead316b4e32887b64503456b697741c6ea4baeaa3690b2156ae401ba4a
|
3 |
+
size 87865
|
PPO-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9cda6298d619e35222db7b00ba44eb5edaff6cc64746c780eb3a8a379ea8a360
|
3 |
+
size 43201
|
PPO-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
PPO-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.6.0
|
4 |
+
PyTorch: 1.12.1+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
README.md
CHANGED
@@ -10,7 +10,7 @@ model-index:
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
-
value:
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
+
value: 280.33 +/- 20.35
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fdc8f2db4d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fdc8f2db560>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fdc8f2db5f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fdc8f2db680>", "_build": "<function ActorCriticPolicy._build at 0x7fdc8f2db710>", "forward": "<function ActorCriticPolicy.forward at 0x7fdc8f2db7a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fdc8f2db830>", "_predict": "<function ActorCriticPolicy._predict at 0x7fdc8f2db8c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fdc8f2db950>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fdc8f2db9e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fdc8f2dba70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fdc8f31cbd0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1661599271.012853, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAFqdnL08xIY/lfSXveylsb433KG9X6K0PQAAAAAAAAAAs84IPbbXMryZC7Q8lhfxPK/Nlr1RMMI9AACAPwAAgD9mWyK988mEPlDXlD4VE1G+HpgPPjyMSLwAAAAAAAAAAPOsrT0CLqU/vaIrP9v9877nGig8qg8OPgAAAAAAAAAAM+/HvfYp5j4j1O89O2yHvkUoqb2yfNq6AAAAAAAAAAAalXc9H3Tvu0usRjv6WZQ8vY1DPTrPeL0AAIA/AACAP5rSxjwUuIW6xVdOt9VyPLIpyx846LJwNgAAgD8AAIA/MxV+PeHIoLqiO5e53H0Xtuwg3jpOtIk1AACAPwAAgD+TCQe+zhOUPl4D6z1xwpi+99IROoUlEj0AAAAAAAAAAG3NED5T/N8+BtcAvgOyZL5qkrI7MV+sugAAAAAAAAAA82OrPcWPLz4hcrI86cpXvl9mMTwq4vK8AAAAAAAAAACziSk9s5G1P/i3rD4N3NG9eiZoPCLiND4AAAAAAAAAAOYGhL0fCtY+vFvDPYzMJr5Hjy88UISAPAAAAAAAAAAAs9N3vcVAYz/ZcKQ9gwadvnhnoL2pwgu9AAAAAAAAAADAkIQ9mxfZPfBi2LzCnIC+dSJTPVNGyDwAAAAAAAAAACZ78T0YJrY9GEwCvjTLLL4z5R67XUD1vAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIEJaxoZtLRECUhpRSlIwBbJRNCgGMAXSUR0CRctJ8fFJhdX2UKGgGaAloD0MIOsrBbEJucUCUhpRSlGgVTV8BaBZHQJFz8INVinZ1fZQoaAZoCWgPQwgHQrKAiYRtQJSGlFKUaBVNWgFoFkdAkXQmTs6aLHV9lChoBmgJaA9DCBiUaTQ5D25AlIaUUpRoFU1YAWgWR0CRihVJL/S6dX2UKGgGaAloD0MITn/2I4U2ckCUhpRSlGgVTVUBaBZHQJGMXtRekYZ1fZQoaAZoCWgPQwgnpaDbS2JvQJSGlFKUaBVNRAFoFkdAkY4W8AaNuXV9lChoBmgJaA9DCNJxNbKrQnBAlIaUUpRoFU1wAWgWR0CRjpJN0vGqdX2UKGgGaAloD0MIe90iMFazcUCUhpRSlGgVTV0BaBZHQJGOuaEzwc51fZQoaAZoCWgPQwg8pYP1fxJRQJSGlFKUaBVN6ANoFkdAkY8ezhP0qnV9lChoBmgJaA9DCG5Nui3RhHBAlIaUUpRoFU1TAWgWR0CRkChKDkELdX2UKGgGaAloD0MIaJYEqCltb0CUhpRSlGgVTdYCaBZHQJGQVxXGOuJ1fZQoaAZoCWgPQwiTq1j8psByQJSGlFKUaBVNbwFoFkdAkZBs85jpcHV9lChoBmgJaA9DCOqWHeLfO3FAlIaUUpRoFU3JAWgWR0CRkM9OymhudX2UKGgGaAloD0MI6USCqSaGcECUhpRSlGgVTUcBaBZHQJGRVPJq7Ad1fZQoaAZoCWgPQwiE2JlC56BxQJSGlFKUaBVNUQFoFkdAkZFfNmlImXV9lChoBmgJaA9DCKwfm+RHckJAlIaUUpRoFUv6aBZHQJGRX4Irvst1fZQoaAZoCWgPQwhnnfF9Mc5xQJSGlFKUaBVNHwFoFkdAkZF4atLcsXV9lChoBmgJaA9DCK37x0L07HFAlIaUUpRoFU2jAWgWR0CRknEroW56dX2UKGgGaAloD0MI4pLjTqkzckCUhpRSlGgVTXEBaBZHQJGUfmknCwd1fZQoaAZoCWgPQwiCPLt86+FuQJSGlFKUaBVNOQFoFkdAkZcalpGnXXV9lChoBmgJaA9DCEClSpS9mm9AlIaUUpRoFU1uAWgWR0CRlz1LamGedX2UKGgGaAloD0MI4bchxmtibUCUhpRSlGgVTSwBaBZHQJGYgB0ZFXt1fZQoaAZoCWgPQwins5PBEd5xQJSGlFKUaBVNUAFoFkdAkZlrAUL2H3V9lChoBmgJaA9DCOI9B5YjZ3BAlIaUUpRoFU1IAWgWR0CRmgZ+hGpddX2UKGgGaAloD0MIGHrE6Dm+b0CUhpRSlGgVTSoBaBZHQJGaNezD4xl1fZQoaAZoCWgPQwi+T1WhAS1yQJSGlFKUaBVNQwFoFkdAkZrrtJFspHV9lChoBmgJaA9DCN/42jMLuXBAlIaUUpRoFU00AWgWR0CRmy6bONYKdX2UKGgGaAloD0MItmlsrwXLb0CUhpRSlGgVTYEBaBZHQJGbscn3L3d1fZQoaAZoCWgPQwgJpppZy2ZuQJSGlFKUaBVNNQFoFkdAkZwGOEM9bHV9lChoBmgJaA9DCO7sKw9SOW9AlIaUUpRoFU1GAWgWR0CRnGrD63y7dX2UKGgGaAloD0MI0gFJ2HewcECUhpRSlGgVTUkBaBZHQJGcgfU4JeF1fZQoaAZoCWgPQwj1KjI6IAJxQJSGlFKUaBVNTgFoFkdAkZyb6+FlCnV9lChoBmgJaA9DCKG/0CMGGXFAlIaUUpRoFU0oAWgWR0CRnqVf/m1ZdX2UKGgGaAloD0MIQEzChfwNckCUhpRSlGgVTcMBaBZHQJGe5BAv+Ox1fZQoaAZoCWgPQwhPeAlOffVxQJSGlFKUaBVNeAFoFkdAkZ7tBrvb5HV9lChoBmgJaA9DCHXIzXADgEJAlIaUUpRoFU0oAWgWR0CRoMIj4YaYdX2UKGgGaAloD0MIx0lh3mOAbkCUhpRSlGgVTWABaBZHQJGi8uJ1q351fZQoaAZoCWgPQwjJ/+TvHn9wQJSGlFKUaBVNLQFoFkdAkaMdIsiB5HV9lChoBmgJaA9DCEPIef8fk3FAlIaUUpRoFU0qAWgWR0CRo5hRZU1idX2UKGgGaAloD0MIsg+yLBgsb0CUhpRSlGgVTWQBaBZHQJGkZU6xPft1fZQoaAZoCWgPQwh0CvKzkSlvQJSGlFKUaBVNSAFoFkdAkaToXGff43V9lChoBmgJaA9DCFSrr64KJG5AlIaUUpRoFU1OAWgWR0CRpeAmzBykdX2UKGgGaAloD0MIdm1vtyTtb0CUhpRSlGgVTUEBaBZHQJGmkW69TP11fZQoaAZoCWgPQwj7dac7T3dwQJSGlFKUaBVNOQFoFkdAkaa+iFj/dnV9lChoBmgJaA9DCAg7xapBlm9AlIaUUpRoFU0+AWgWR0CRpycXWOIZdX2UKGgGaAloD0MIXkpdMg6hcECUhpRSlGgVTVwBaBZHQJGnL5xiobZ1fZQoaAZoCWgPQwhSK0zfK8RwQJSGlFKUaBVNcwFoFkdAkad4VdonKHV9lChoBmgJaA9DCBEY6xuYa29AlIaUUpRoFU1mAWgWR0CRqEPRRdhRdX2UKGgGaAloD0MIXtkFg6tncUCUhpRSlGgVTSgBaBZHQJGoykTHsC11fZQoaAZoCWgPQwjDn+HNmvpqQJSGlFKUaBVNTwFoFkdAkaounQ6ZIHV9lChoBmgJaA9DCFj+fFswe3BAlIaUUpRoFU1EAWgWR0CRq+AYHgP3dX2UKGgGaAloD0MIjX40nDLUbkCUhpRSlGgVTTMBaBZHQJHANsP8Q7N1fZQoaAZoCWgPQwhOfSB5ZxRsQJSGlFKUaBVNNwFoFkdAkcCJC8e0X3V9lChoBmgJaA9DCB40u+7tDnFAlIaUUpRoFU00AWgWR0CRwazundftdX2UKGgGaAloD0MISdV2E7whcECUhpRSlGgVTWUBaBZHQJHC1ZDArQR1fZQoaAZoCWgPQwgRUrezr+pyQJSGlFKUaBVNHAFoFkdAkcM03GXHBHV9lChoBmgJaA9DCKyrArWYUm9AlIaUUpRoFU1lAWgWR0CRxF0kGA09dX2UKGgGaAloD0MIKGIRw45wbkCUhpRSlGgVTT4BaBZHQJHFlTJhfBx1fZQoaAZoCWgPQwhAS1ewzVJxQJSGlFKUaBVNbAFoFkdAkcWzSThYNnV9lChoBmgJaA9DCA/Tvrl/PHFAlIaUUpRoFU1RAWgWR0CRxg5rxiG4dX2UKGgGaAloD0MI6Qq2Ec9qbUCUhpRSlGgVTR8BaBZHQJHGOrksBhh1fZQoaAZoCWgPQwimCkYl9f1vQJSGlFKUaBVNWgFoFkdAkcZavicXnHV9lChoBmgJaA9DCNr/AGsVn3BAlIaUUpRoFU11AWgWR0CRxq7Rv3rVdX2UKGgGaAloD0MI1CzQ7pCsbUCUhpRSlGgVTVQBaBZHQJHHRBIFvAJ1fZQoaAZoCWgPQwhRhT/DG7pwQJSGlFKUaBVNJAFoFkdAkcfM/D+BH3V9lChoBmgJaA9DCHTudr00HnBAlIaUUpRoFU1JAWgWR0CRyr3ai9IxdX2UKGgGaAloD0MIRS3NrdBkcECUhpRSlGgVTUEBaBZHQJHMEbjtG/h1fZQoaAZoCWgPQwiPHOkMDFpwQJSGlFKUaBVNPgFoFkdAkcxD5wfhdnV9lChoBmgJaA9DCA3DR8RUNXFAlIaUUpRoFU07AWgWR0CRzTQa72+PdX2UKGgGaAloD0MI6nqi60KCcECUhpRSlGgVTUMBaBZHQJHO7im2sq91fZQoaAZoCWgPQwi22sNeaB1xQJSGlFKUaBVNKQFoFkdAkc7uVPepGXV9lChoBmgJaA9DCHx9rUvNInBAlIaUUpRoFU1ZAWgWR0CRz3Lg4wRHdX2UKGgGaAloD0MImboru2CDcUCUhpRSlGgVTRkBaBZHQJHP+pKjBVN1fZQoaAZoCWgPQwiHjEephIJvQJSGlFKUaBVNSAFoFkdAkdGjM/yGz3V9lChoBmgJaA9DCFbzHJFvVnFAlIaUUpRoFU1GAWgWR0CR0d/ATIvKdX2UKGgGaAloD0MIrdug9lvgcUCUhpRSlGgVTVwBaBZHQJHSA9ovi991fZQoaAZoCWgPQwigMv59Rp5vQJSGlFKUaBVNSwFoFkdAkdJurELpinV9lChoBmgJaA9DCCQlPQwt/G9AlIaUUpRoFU1KAWgWR0CR0x4FzMibdX2UKGgGaAloD0MIujDSi1qGbkCUhpRSlGgVTUUBaBZHQJHTkZOzpot1fZQoaAZoCWgPQwjdXPxtz0tvQJSGlFKUaBVNnQFoFkdAkdRFnAZbZHV9lChoBmgJaA9DCFbT9UTXxGFAlIaUUpRoFU3oA2gWR0CR1Q5hz/6wdX2UKGgGaAloD0MIgqynVt9TbECUhpRSlGgVTVYBaBZHQJHW9XCCSRt1fZQoaAZoCWgPQwhX68TleHprQJSGlFKUaBVNPwFoFkdAkddZe/pMYnV9lChoBmgJaA9DCNnonJ/iUHBAlIaUUpRoFU1dAWgWR0CR2KWHUMG5dX2UKGgGaAloD0MIW5pbIeybcECUhpRSlGgVTVgBaBZHQJHZcYWLxZx1fZQoaAZoCWgPQwjhQEgW8CpxQJSGlFKUaBVNSAFoFkdAkdqJ35eqrHV9lChoBmgJaA9DCLG/7J48mHBAlIaUUpRoFU0+AWgWR0CR2qxLCemOdX2UKGgGaAloD0MIVwT/W8mpb0CUhpRSlGgVTT0BaBZHQJHbKs7uDz11fZQoaAZoCWgPQwhhpu1fWR9tQJSGlFKUaBVNfgFoFkdAkdyAp4KQaXV9lChoBmgJaA9DCHHjFvNzNnJAlIaUUpRoFU0+AWgWR0CR3MAo5PuYdX2UKGgGaAloD0MIkszqHW6ma0CUhpRSlGgVTT8BaBZHQJHdGfPHDJl1fZQoaAZoCWgPQwjDgZAsYHBvQJSGlFKUaBVNNQFoFkdAkd42vjfelHV9lChoBmgJaA9DCDf7A+W21HFAlIaUUpRoFU1bAWgWR0CR3mB55Z8sdX2UKGgGaAloD0MIHXIz3AByb0CUhpRSlGgVTSoBaBZHQJHelPhybQV1fZQoaAZoCWgPQwg91LZhVJJwQJSGlFKUaBVNeQFoFkdAkd7OqWC2+nV9lChoBmgJaA9DCPdZZaa0m3FAlIaUUpRoFU1WAWgWR0CR3slcyFfzdX2UKGgGaAloD0MIuRYtQNsdcECUhpRSlGgVTXMBaBZHQJHhl5mh/RV1fZQoaAZoCWgPQwhUpwNZz4lyQJSGlFKUaBVNSgFoFkdAkeIwezUqhHV9lChoBmgJaA9DCHWOAdnr525AlIaUUpRoFU1HAWgWR0CR4+HMEA5rdX2UKGgGaAloD0MIOiS1UDJeb0CUhpRSlGgVTWoBaBZHQJHj45lvqC91ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb2fd6825f0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb2fd682680>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb2fd682710>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb2fd6827a0>", "_build": "<function ActorCriticPolicy._build at 0x7fb2fd682830>", "forward": "<function ActorCriticPolicy.forward at 0x7fb2fd6828c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb2fd682950>", "_predict": "<function ActorCriticPolicy._predict at 0x7fb2fd6829e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb2fd682a70>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb2fd682b00>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb2fd682b90>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fb2fd6cbb40>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1622016, "_total_timesteps": 1619666, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1662212008.9638572, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAAjWOLveESh7rSHoU21dWGMfixBDsuwJ21AACAPwAAgD9NPSw9Hxqzuz4/Xr0iU7s839gEPedZnb0AAIA/AACAP/Nfkz32TyU9MglavZFmkL4FZ2U6KF+VvAAAAAAAAAAAM7PzOoV7h7smYB+8oB+yPJjA2DzGxJa9AACAPwAAgD/NUno+q9zpPvIUw74vrve+L6+SPZqEOb4AAAAAAAAAAGavMr4cnXW8GrpSvMeau7oVI+A9R6aVOwAAgD8AAIA/zcT9vClISro5OSQ8YDe3tKwspjoYxoizAAAAAAAAAAANzqm+KlsPP5ndmb4XdTi/EH25vpEtoD0AAAAAAAAAAPOlmD15a6Q+gUoqvsMYxL67bwy9tXNGvQAAAAAAAAAA2nyiPVz7arqQXSGzziEhrppnY7tKDMozAACAPwAAgD8aSnq+LB9LPht9WT72q5u+tIWcvePcqD0AAAAAAAAAANp74T0LGFY/ymLpPQ2tFb+tBCk+vnEROgAAAAAAAAAAMwL0PN9OoD+iFfo90g8bv0xqxzzKlgE+AAAAAAAAAAAAuMY71nexP7K3CT2sb4S+EMiwu9ATsTwAAAAAAAAAAKa5xD108So+NzMKvvTgrL7J9Li71okCPAAAAAAAAAAAmr1/PMOUBLxO3N+8rHEZPRngZz0rbvq9AACAPwAAgD+UdJRiLg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.001450916423509474, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVJxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI4umVsgyZb0CUhpRSlIwBbJRLtowBdJRHQNEbDdOmBOJ1fZQoaAZoCWgPQwi7RPXWwLxzQJSGlFKUaBVL3mgWR0DRGxhn+Q2ddX2UKGgGaAloD0MICwith++tcUCUhpRSlGgVS/NoFkdA0Rsek8Rtg3V9lChoBmgJaA9DCFa6u85GL3NAlIaUUpRoFU1pAmgWR0DRGzAqbz9TdX2UKGgGaAloD0MIu5f75GiacECUhpRSlGgVS8loFkdA0RsyBzmwJXV9lChoBmgJaA9DCD+RJ0kXTnFAlIaUUpRoFUu8aBZHQNEbNkyxiXp1fZQoaAZoCWgPQwiZuFUQA69CQJSGlFKUaBVLeGgWR0DRGzrdM0xedX2UKGgGaAloD0MI1lQWhV1cYUCUhpRSlGgVTegDaBZHQNEbR8xj8UF1fZQoaAZoCWgPQwh7Z7RViWRzQJSGlFKUaBVLz2gWR0DRG1fltCRfdX2UKGgGaAloD0MI/fohNljgR0CUhpRSlGgVS5RoFkdA0RtZqwQlKXV9lChoBmgJaA9DCK9gG/Gke3BAlIaUUpRoFUvPaBZHQNEbXi/Glyl1fZQoaAZoCWgPQwgknYGRF95xQJSGlFKUaBVL3WgWR0DRG2UH0K7adX2UKGgGaAloD0MIVS+/0+Qrb0CUhpRSlGgVS9NoFkdA0Rtn6X0GvHV9lChoBmgJaA9DCOZatADtknBAlIaUUpRoFUvqaBZHQNEbahW1c+t1fZQoaAZoCWgPQwgMA5ZcxURvQJSGlFKUaBVL2GgWR0DRG2vqnm7rdX2UKGgGaAloD0MIBDqTNlUBb0CUhpRSlGgVS8xoFkdA0Rt2FjurqHV9lChoBmgJaA9DCKAZxAd2RHJAlIaUUpRoFUu2aBZHQNEbfi75Ec91fZQoaAZoCWgPQwjarPpc7ZxxQJSGlFKUaBVLs2gWR0DRG4D+wTufdX2UKGgGaAloD0MIJnFWRI25cUCUhpRSlGgVS9JoFkdA0RuH+aScLHV9lChoBmgJaA9DCAiUTbkCnXFAlIaUUpRoFUvUaBZHQNEbn4XoC+11fZQoaAZoCWgPQwjCvwgas7pyQJSGlFKUaBVL8mgWR0DRG6AM7U5NdX2UKGgGaAloD0MIrfpcbYWDc0CUhpRSlGgVS7BoFkdA0Rut0PpY93V9lChoBmgJaA9DCKkz95AwwHBAlIaUUpRoFUu4aBZHQNEbtPNZ/1B1fZQoaAZoCWgPQwh6jPLMy2ZxQJSGlFKUaBVL3GgWR0DRG7ZmCiAUdX2UKGgGaAloD0MIy7p/LAQBdECUhpRSlGgVS+toFkdA0RvBdVvMr3V9lChoBmgJaA9DCMssQrGVf25AlIaUUpRoFUvTaBZHQNEbw1KXfIl1fZQoaAZoCWgPQwioOA68WnxdQJSGlFKUaBVN6ANoFkdA0RvESOR1YHV9lChoBmgJaA9DCCofgqrR8HNAlIaUUpRoFUvoaBZHQNEbzeI/JNl1fZQoaAZoCWgPQwirB8xDpn1uQJSGlFKUaBVLzGgWR0DRG9W5nUUgdX2UKGgGaAloD0MIF9aNdwcycUCUhpRSlGgVS89oFkdA0RvZzHjp93V9lChoBmgJaA9DCCwrTUoBsnJAlIaUUpRoFUvwaBZHQNEb2+YtxuN1fZQoaAZoCWgPQwieQq7U8z1zQJSGlFKUaBVNOwFoFkdA0Rvcse4kNXV9lChoBmgJaA9DCO4JEtsdYXNAlIaUUpRoFUvzaBZHQNEdcQLZzxR1fZQoaAZoCWgPQwiERrBxvR5wQJSGlFKUaBVLvmgWR0DRHX6TyJ9BdX2UKGgGaAloD0MIyR8MPDcwc0CUhpRSlGgVS+BoFkdA0R1+/0/W2HV9lChoBmgJaA9DCCYbD7aYgHFAlIaUUpRoFUvlaBZHQNEdgVLvkR11fZQoaAZoCWgPQwh5ymq63gBzQJSGlFKUaBVLxmgWR0DRHYhKAavSdX2UKGgGaAloD0MIK061FmbtcECUhpRSlGgVS8JoFkdA0R2QKIBRynV9lChoBmgJaA9DCNgLBWxHe3JAlIaUUpRoFUvBaBZHQNEdkhFqi491fZQoaAZoCWgPQwhbQj7oGUVxQJSGlFKUaBVL6WgWR0DRHZRGH58CdX2UKGgGaAloD0MINSTusTRTcUCUhpRSlGgVS7VoFkdA0R2Wej2zwHV9lChoBmgJaA9DCFTjpZtEXnJAlIaUUpRoFUvfaBZHQNEdnAJ9iMJ1fZQoaAZoCWgPQwhBDd/COttuQJSGlFKUaBVL1GgWR0DRHak6Mir1dX2UKGgGaAloD0MI0Oy6t6KPYUCUhpRSlGgVTegDaBZHQNEdrAHiWE91fZQoaAZoCWgPQwgTm49rQ5hwQJSGlFKUaBVL0mgWR0DRHaxUGVzIdX2UKGgGaAloD0MIyjSaXEzVcECUhpRSlGgVS/BoFkdA0R25O8Cgb3V9lChoBmgJaA9DCCDwwADCSXBAlIaUUpRoFUv3aBZHQNEdvJJCjUN1fZQoaAZoCWgPQwiYpDLFHLRwQJSGlFKUaBVLwWgWR0DRHci4z7/GdX2UKGgGaAloD0MI6WD9n8PGc0CUhpRSlGgVS/ZoFkdA0R3ND0UXYXV9lChoBmgJaA9DCJoIG56eknNAlIaUUpRoFUu7aBZHQNEdzeAI6bR1fZQoaAZoCWgPQwhPyqSGdpxwQJSGlFKUaBVLw2gWR0DRHdiKyfL+dX2UKGgGaAloD0MID18mipBsc0CUhpRSlGgVS/doFkdA0R3aZVGTcXV9lChoBmgJaA9DCOaw+45hzm5AlIaUUpRoFUvHaBZHQNEd3ht52Qp1fZQoaAZoCWgPQwjedTbkX2ZwQJSGlFKUaBVLwmgWR0DRHd6TfR/mdX2UKGgGaAloD0MIgXnIlA8eUECUhpRSlGgVS5JoFkdA0R3hxMWXTnV9lChoBmgJaA9DCKQ4Rx1dH3FAlIaUUpRoFUvjaBZHQNEd5ewC8vp1fZQoaAZoCWgPQwjdI5ur5pFwQJSGlFKUaBVL12gWR0DRHewQoTf0dX2UKGgGaAloD0MI9wSJ7e6KckCUhpRSlGgVTYEDaBZHQNEd8X1e0HB1fZQoaAZoCWgPQwi+E7NeDA1yQJSGlFKUaBVLymgWR0DRHfPOmixndX2UKGgGaAloD0MI3zE89rORc0CUhpRSlGgVS/VoFkdA0R4FqL0jDHV9lChoBmgJaA9DCAETuHU3iHBAlIaUUpRoFUvNaBZHQNEeB0LH+611fZQoaAZoCWgPQwj0Fg/vOUxOQJSGlFKUaBVLq2gWR0DRHhdhhH9WdX2UKGgGaAloD0MIvhb03lgockCUhpRSlGgVS+JoFkdA0R4cuieum3V9lChoBmgJaA9DCFtdTgnIp3BAlIaUUpRoFUvaaBZHQNEeHfq5byJ1fZQoaAZoCWgPQwhAhLhydmRxQJSGlFKUaBVLxWgWR0DRHiOK64DtdX2UKGgGaAloD0MIGmoUkkyIcUCUhpRSlGgVS8FoFkdA0R4qGr0aqHV9lChoBmgJaA9DCG/ZIf5h80dAlIaUUpRoFUuZaBZHQNEeLdFa0Qd1fZQoaAZoCWgPQwiSkbOwZyJxQJSGlFKUaBVL3GgWR0DRHjEWrOqvdX2UKGgGaAloD0MIONibGJKPckCUhpRSlGgVS+xoFkdA0R5AgjyFwnV9lChoBmgJaA9DCAkX8gjuY3NAlIaUUpRoFUvgaBZHQNEeQimhufp1fZQoaAZoCWgPQwhSDmYT4NVzQJSGlFKUaBVNRgFoFkdA0R5KGZuyeXV9lChoBmgJaA9DCLyUumRcOHNAlIaUUpRoFUvyaBZHQNEeTzTfBN51fZQoaAZoCWgPQwjAQBAggxNwQJSGlFKUaBVL5mgWR0DRHmJyuIRAdX2UKGgGaAloD0MImRBzSdWaR0CUhpRSlGgVS5JoFkdA0R5mee4Cp3V9lChoBmgJaA9DCIofY+5aXG5AlIaUUpRoFUvJaBZHQNEecE3wTdt1fZQoaAZoCWgPQwiGV5I8lyFxQJSGlFKUaBVLz2gWR0DRHnRTho/SdX2UKGgGaAloD0MIDWyVYDE4dECUhpRSlGgVTRIBaBZHQNEeeDqv/zd1fZQoaAZoCWgPQwhM4NbdfJtzQJSGlFKUaBVL8GgWR0DRHnwOOKfndX2UKGgGaAloD0MIAwmKH+MxckCUhpRSlGgVS9RoFkdA0R59TyJ9A3V9lChoBmgJaA9DCK1p3nGKxXBAlIaUUpRoFUu9aBZHQNEefje9Ba91fZQoaAZoCWgPQwhJLCl3H59yQJSGlFKUaBVLumgWR0DRHoAZm7J5dX2UKGgGaAloD0MI/S/XogU+c0CUhpRSlGgVTasCaBZHQNEeh/5HmRx1fZQoaAZoCWgPQwhvufqxSadyQJSGlFKUaBVLzGgWR0DRHpUXizcAdX2UKGgGaAloD0MIGLFPAMVrbUCUhpRSlGgVS8poFkdA0R6V8dPtUnV9lChoBmgJaA9DCOiC+pY5NXJAlIaUUpRoFU3mAWgWR0DRHp6yOaOQdX2UKGgGaAloD0MI5SfVPl28ckCUhpRSlGgVS9BoFkdA0R6f1aGHpXV9lChoBmgJaA9DCLUX0XZMvm5AlIaUUpRoFUvSaBZHQNEepLQgLZ11fZQoaAZoCWgPQwgEHhhA+E5xQJSGlFKUaBVL0mgWR0DRHrXLbHp9dX2UKGgGaAloD0MIpkdTPZkDcUCUhpRSlGgVS8poFkdA0R62T1CgLHV9lChoBmgJaA9DCEDBxYrae3JAlIaUUpRoFUu+aBZHQNEeuXk1dgR1fZQoaAZoCWgPQwifAIqRJTZSQJSGlFKUaBVLtmgWR0DRHr/DvVmSdX2UKGgGaAloD0MIlNv2PaqmcECUhpRSlGgVS8toFkdA0R7Ep1zQu3V9lChoBmgJaA9DCAOZnUUvu3JAlIaUUpRoFUvJaBZHQNEeyA1vVEx1fZQoaAZoCWgPQwhT51HxP0ByQJSGlFKUaBVLxGgWR0DRHsjiLl3hdX2UKGgGaAloD0MIq3mOyHfBcUCUhpRSlGgVS7RoFkdA0R7KvVmSQ3V9lChoBmgJaA9DCHy1ozjH/W9AlIaUUpRoFUvxaBZHQNEez6IBRyh1fZQoaAZoCWgPQwjG+gYm92FzQJSGlFKUaBVLxmgWR0DRHt7opx3ndX2UKGgGaAloD0MI9WVpp6auckCUhpRSlGgVS71oFkdA0R7kWBjFynV9lChoBmgJaA9DCNv3qL9eZT9AlIaUUpRoFUtcaBZHQNEe7rBKtgd1fZQoaAZoCWgPQwgnUMQiRupxQJSGlFKUaBVL8mgWR0DRHvDqZ+hHdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 495, "n_steps": 1024, "gamma": 0.9925930803547798, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 5, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 280.3316208170701, "std_reward": 20.35294705902962, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-09-03T14:03:47.330811"}
|