--- library_name: transformers license: apache-2.0 base_model: answerdotai/ModernBERT-base tags: - generated_from_trainer model-index: - name: dazzling-hound-586 results: [] --- # dazzling-hound-586 This model is a fine-tuned version of [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2093 - Hamming Loss: 0.0755 - Zero One Loss: 0.6188 - Jaccard Score: 0.5985 - Hamming Loss Optimised: 0.075 - Hamming Loss Threshold: 0.4882 - Zero One Loss Optimised: 0.5513 - Zero One Loss Threshold: 0.2887 - Jaccard Score Optimised: 0.4541 - Jaccard Score Threshold: 0.2220 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.871069949578436e-06 - train_batch_size: 32 - eval_batch_size: 32 - seed: 2024 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.8955773174153844,0.9360886643830869) and epsilon=1e-07 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Hamming Loss | Zero One Loss | Jaccard Score | Hamming Loss Optimised | Hamming Loss Threshold | Zero One Loss Optimised | Zero One Loss Threshold | Jaccard Score Optimised | Jaccard Score Threshold | |:-------------:|:-----:|:----:|:---------------:|:------------:|:-------------:|:-------------:|:----------------------:|:----------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:-----------------------:| | No log | 1.0 | 100 | 0.2884 | 0.0989 | 0.8588 | 0.8569 | 0.0953 | 0.3770 | 0.7338 | 0.2090 | 0.6634 | 0.1684 | | No log | 2.0 | 200 | 0.2256 | 0.0801 | 0.6700 | 0.6558 | 0.0783 | 0.4253 | 0.5713 | 0.2674 | 0.4899 | 0.2186 | | No log | 3.0 | 300 | 0.2093 | 0.0755 | 0.6188 | 0.5985 | 0.075 | 0.4882 | 0.5513 | 0.2887 | 0.4541 | 0.2220 | ### Framework versions - Transformers 4.48.0.dev0 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.21.0