File size: 2,914 Bytes
b73eb75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---

library_name: transformers
license: apache-2.0
base_model: answerdotai/ModernBERT-base
tags:
- generated_from_trainer
model-index:
- name: defiant-cow-743
  results: []
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# defiant-cow-743

This model is a fine-tuned version of [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1694
- Hamming Loss: 0.0587
- Zero One Loss: 0.3888
- Jaccard Score: 0.3282
- Hamming Loss Optimised: 0.0546
- Hamming Loss Threshold: 0.7112
- Zero One Loss Optimised: 0.385
- Zero One Loss Threshold: 0.5227
- Jaccard Score Optimised: 0.3043
- Jaccard Score Threshold: 0.3381

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 7.559719999499729e-05

- train_batch_size: 32

- eval_batch_size: 32

- seed: 2024

- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9012137258321917,0.9887626606614206) and epsilon=1e-07 and optimizer_args=No additional optimizer arguments

- lr_scheduler_type: linear

- num_epochs: 3

### Training results

| Training Loss | Epoch | Step | Validation Loss | Hamming Loss | Zero One Loss | Jaccard Score | Hamming Loss Optimised | Hamming Loss Threshold | Zero One Loss Optimised | Zero One Loss Threshold | Jaccard Score Optimised | Jaccard Score Threshold |
|:-------------:|:-----:|:----:|:---------------:|:------------:|:-------------:|:-------------:|:----------------------:|:----------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:-----------------------:|
| No log        | 1.0   | 100  | 0.1620          | 0.0604       | 0.475         | 0.4250        | 0.0595                 | 0.5386                 | 0.4363                  | 0.3884                  | 0.3294                  | 0.3229                  |
| No log        | 2.0   | 200  | 0.1549          | 0.0563       | 0.3862        | 0.3276        | 0.0561                 | 0.6040                 | 0.3875                  | 0.5045                  | 0.3064                  | 0.3565                  |
| No log        | 3.0   | 300  | 0.1694          | 0.0587       | 0.3888        | 0.3282        | 0.0546                 | 0.7112                 | 0.385                   | 0.5227                  | 0.3043                  | 0.3381                  |


### Framework versions

- Transformers 4.48.0.dev0
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.21.0