File size: 2,647 Bytes
8dd5fa9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---

library_name: transformers
license: apache-2.0
base_model: distilbert/distilbert-base-cased
tags:
- generated_from_trainer
model-index:
- name: popular-snail-470
  results: []
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# popular-snail-470

This model is a fine-tuned version of [distilbert/distilbert-base-cased](https://huggingface.co/distilbert/distilbert-base-cased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1428
- Hamming Loss: 0.0394
- Zero One Loss: 0.8140
- Jaccard Score: 0.7792
- Hamming Loss Optimised: 0.0378
- Hamming Loss Threshold: 0.2878
- Zero One Loss Optimised: 0.71
- Zero One Loss Threshold: 0.1741
- Jaccard Score Optimised: 0.6376
- Jaccard Score Threshold: 0.1616

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5.0943791435964314e-05

- train_batch_size: 20

- eval_batch_size: 20

- seed: 2024

- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments

- lr_scheduler_type: linear

- num_epochs: 2

### Training results

| Training Loss | Epoch | Step | Validation Loss | Hamming Loss | Zero One Loss | Jaccard Score | Hamming Loss Optimised | Hamming Loss Threshold | Zero One Loss Optimised | Zero One Loss Threshold | Jaccard Score Optimised | Jaccard Score Threshold |
|:-------------:|:-----:|:----:|:---------------:|:------------:|:-------------:|:-------------:|:----------------------:|:----------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:-----------------------:|
| No log        | 1.0   | 160  | 0.1685          | 0.0438       | 0.8812        | 0.8679        | 0.0438                 | 0.5944                 | 0.8812                  | 0.7111                  | 0.8679                  | 0.7111                  |
| No log        | 2.0   | 320  | 0.1422          | 0.0398       | 0.815         | 0.7804        | 0.0363                 | 0.2166                 | 0.6925                  | 0.1817                  | 0.621                   | 0.1587                  |


### Framework versions

- Transformers 4.46.2
- Pytorch 2.5.1+cu118
- Datasets 3.1.0
- Tokenizers 0.20.3