--- library_name: transformers license: apache-2.0 base_model: answerdotai/ModernBERT-base tags: - generated_from_trainer model-index: - name: respected-auk-145 results: [] --- # respected-auk-145 This model is a fine-tuned version of [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1608 - Hamming Loss: 0.059 - Zero One Loss: 0.4500 - Jaccard Score: 0.3949 - Hamming Loss Optimised: 0.058 - Hamming Loss Threshold: 0.5957 - Zero One Loss Optimised: 0.4275 - Zero One Loss Threshold: 0.3876 - Jaccard Score Optimised: 0.3382 - Jaccard Score Threshold: 0.3000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2.981063961904907e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 2024 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.913862773872536,0.981775961733248) and epsilon=1e-07 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Hamming Loss | Zero One Loss | Jaccard Score | Hamming Loss Optimised | Hamming Loss Threshold | Zero One Loss Optimised | Zero One Loss Threshold | Jaccard Score Optimised | Jaccard Score Threshold | |:-------------:|:-----:|:----:|:---------------:|:------------:|:-------------:|:-------------:|:----------------------:|:----------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:-----------------------:| | No log | 1.0 | 100 | 0.1681 | 0.065 | 0.4988 | 0.4526 | 0.0636 | 0.5593 | 0.47 | 0.3764 | 0.3616 | 0.2689 | | No log | 2.0 | 200 | 0.1608 | 0.059 | 0.4500 | 0.3949 | 0.058 | 0.5957 | 0.4275 | 0.3876 | 0.3382 | 0.3000 | ### Framework versions - Transformers 4.48.0.dev0 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.21.0