hyunwoongko commited on
Commit
956dd33
1 Parent(s): a5dd571

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +50 -49
README.md CHANGED
@@ -7,7 +7,7 @@ tags:
7
  license: apache-2.0
8
 
9
  ---
10
- # Polyglot-Ko-3.8B
11
 
12
  ## Model Description
13
  Polyglot-Ko is a series of large-scale Korean autoregressive language models made by the EleutherAI polyglot team. Polyglot-Ko-3.8B is the second one.
@@ -31,15 +31,38 @@ dimensions of each head. The model is trained with a tokenization vocabulary of
31
 
32
  ## Training data
33
 
34
- Polyglot-Ko was trained on 1.2TB Korean Dataset, a large-scale curated dataset created by [TUNiB](https://tunib.ai/).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35
 
36
- ## Training procedure
 
 
37
 
38
- Polyglot-Ko was trained for 219 billion tokens over 105,000 steps on 256 * A100 GPUs with [GPT-NeoX framework](https://github.com/EleutherAI/gpt-neox). It was trained as an autoregressive language model, using cross-entropy loss to maximize the likelihood of predicting the next token correctly.
 
39
 
40
  ## How to use
41
 
42
- This model can be easily loaded using the `AutoModelForCausalLM` functionality:
43
 
44
  ```python
45
  from transformers import AutoTokenizer, AutoModelForCausalLM
@@ -48,37 +71,16 @@ tokenizer = AutoTokenizer.from_pretrained("EleutherAI/polyglot-ko-3.8b")
48
  model = AutoModelForCausalLM.from_pretrained("EleutherAI/polyglot-ko-3.8b")
49
  ```
50
 
51
- ## Data Risks
52
-
53
- Polyglot models learn an inner representation of the various languages that can be used to extract features useful for downstream tasks.
54
- The model is best at what it was pre-trained for, however, generating text from a prompt.
55
-
56
- ### Privacy considerations
57
- General training algorithms for pre-trained language models have many hazards, that memorize personal information in training data. We added the following tokens to vocabulary to mitigate privacy problems and replaced much personal information with these tokens in data preprocessing steps.
58
-
59
- * `<|acc|>` : bank account number
60
- * `<|rrn|>` : resident registration number
61
- * `<|tell|>` : phone number
62
-
63
- ### Limitations and Biases
64
- The core functionality of Polyglot is taking a string of text and predicting the next token. While language models are widely used for tasks other than this, there are a lot of unknowns with this work. When prompting Polyglot it is important to remember that the statistically most likely next token is often not the token that produces the most "accurate" text. Never depend upon Polyglot to produce factually accurate output. Depending upon the use case, Polyglot may produce socially unacceptable text.
65
 
66
- As with all language models, it is hard to predict in advance how Polyglot will respond to particular prompts, and offensive content may occur without warning. We recommend having a human curate or filter the outputs before releasing them, both to censor undesirable content and to improve the quality of the results.
67
 
68
- ### Legal Restrictions
69
- Since there are laws in many countries related to data collection, we will collect data with due regard to the laws of those countries.
70
- Additionally, we plan to use the dataset to train our models, but we do not plan to make the dataset publicly available.
71
-
72
- ## Evaluation results
73
- We used the [KOBEST dataset](https://arxiv.org/abs/2204.04541), which consists of five Korean downstream tasks, for evaluation.
74
- We added those tasks to [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness) and utilized prompt templates described in the paper.
75
- We evaluted our model as well as two other Korean language models, i.e., skt/ko-gpt-trinity-1.2B-v0.5 and kakaobrain/kogpt for comparison.
76
- The following tables show the results when the number of few-shot examples differ. You can reproduce these results using [polyglot branch of lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness/tree/polyglot) and the following scripts.
77
 
78
  ```console
79
  python main.py \
80
  --model gpt2 \
81
- --model_args pretrained='EleutherAI/polyglot-ko-1.3b' \
82
  --tasks kobest_copa,kobest_hellaswag \
83
  --num_fewshot $YOUR_NUM_FEWSHOT \
84
  --batch_size $YOUR_BATCH_SIZE \
@@ -86,35 +88,35 @@ python main.py \
86
  --output_path $/path/to/output/
87
  ```
88
 
89
- **We decided to show only COPA and HellaSwag from KOBEST because evaluated models performed similarly to random guesses or with high variance on other tasks.**
90
 
91
  ### COPA (F1)
92
 
93
- | Model | params | 0-shot | 5-shot | 10-shot | 50-shot |
94
- |------------------------------------------------------------------------------------------------|--------|--------|--------|---------|---------|
95
- | [facebook/xglm-7.5B](https://huggingface.co/facebook/xglm-7.5B) | 7.5B | 0.6723 | 0.6731 | 0.6769 | 0.7119 |
96
- | [skt/ko-gpt-trinity-1.2B-v0.5](https://huggingface.co/skt/ko-gpt-trinity-1.2B-v0.5) &dagger; | 1.2B | 0.6696 | 0.6477 | 0.6419 | 0.6514 |
97
- | [kakaobrain/kogpt](https://huggingface.co/kakaobrain/kogpt) &ast; | 6.0B | 0.7345 | 0.7287 | 0.7277 | 0.7479 |
98
- | [EleutherAI/polyglot-ko-1.3b](https://huggingface.co/EleutherAI/polyglot-ko-1.3b) (ours) | 1.3B | 0.7196 | 0.7193 | 0.7204 | 0.7206 |
99
  | **[EleutherAI/polyglot-ko-3.8b](https://huggingface.co/EleutherAI/polyglot-ko-3.8b) (this)** | **3.8B** | **0.7595** | **0.7608** | **0.7638** | **0.7788** |
100
 
101
- <img src="https://user-images.githubusercontent.com/19511788/192492576-cdd80c5c-7c90-43e3-8a4b-7a8486878f23.png" width="800px">
102
 
103
  ### HellaSwag (F1)
104
 
105
- | Model | params | 0-shot | 5-shot | 10-shot | 50-shot |
106
  |------------------------------------------------------------------------------------------------|--------|--------|--------|---------|---------|
 
 
107
  | [facebook/xglm-7.5B](https://huggingface.co/facebook/xglm-7.5B) | 7.5B | 0.4261 | 0.437 | 0.4409 | 0.4517 |
108
- | [skt/ko-gpt-trinity-1.2B-v0.5](https://huggingface.co/skt/ko-gpt-trinity-1.2B-v0.5) &dagger; | 1.2B | 0.4036 | 0.4 | 0.4011 | 0.4214 |
109
- | [kakaobrain/kogpt](https://huggingface.co/kakaobrain/kogpt) &ast; | 6.0B | 0.4599 | 0.456 | 0.4616 | 0.4754 |
110
- | [EleutherAI/polyglot-ko-1.3b](https://huggingface.co/EleutherAI/polyglot-ko-1.3b) (ours) | 1.3B | 0.4013 | 0.3984 | 0.417 | 0.4416 |
111
- | [EleutherAI/polyglot-ko-3.8b](https://huggingface.co/EleutherAI/polyglot-ko-3.8b) **(this)** | **3.8B** | **0.4438** | **0.4786** | **0.4737** | **0.4822** |
112
 
113
- <img src="https://user-images.githubusercontent.com/19511788/192492585-a976ee38-2967-446a-b577-94f219228f4d.png" width="800px">
114
 
115
- <p><strong>&dagger;</strong> The model card of this model provides evaluation results for the KOBEST dataset, but when we evaluated the model with the prompts described in the paper, we can't get similar results to it. Therefore, we checked the KOBEST paper and found that the results were similar to the fine-tuning results reported in the paper. Because we evaluated by prompt-based generation without fine-tuning the model, the results provided by the model card for the this model may differ.</p>
116
 
117
- <p><strong>&ast;</strong> Since this model does not provide evaluation results with KOBEST dataset, we evaluated the model using lm-evaluation-harness ourselves. you can reproduce this result using the source code included in the polyglot branch of lm-evaluation-harness.</p>
118
 
119
  ## Citation and Related Information
120
  ### BibTeX entry
@@ -146,7 +148,6 @@ See the License for the specific language governing permissions and
146
  limitations under the License.
147
  ```
148
 
149
- However, the model has the potential to generate unpredictable text as mentioned. Therefore, we are not responsible for any damages resulting from the use of the model.
150
-
151
  ### Acknowledgement
152
- This project would not have been possible without the computing resources provided by [Stability.ai](https://stability.ai). Thanks for providing a large amount of GPU resources. Furthermore, thanks to [TUNiB](https://tunib.ai) for providing a large-scale Korean dataset for this work.
 
 
7
  license: apache-2.0
8
 
9
  ---
10
+ # Polyglot-Ko-1.3B
11
 
12
  ## Model Description
13
  Polyglot-Ko is a series of large-scale Korean autoregressive language models made by the EleutherAI polyglot team. Polyglot-Ko-3.8B is the second one.
 
31
 
32
  ## Training data
33
 
34
+ Polyglot-Ko was trained on 863 GB of Korean language data (1.2TB before processing), a large-scale dataset curated by [TUNiB](https://tunib.ai/). The data collection process has abided by South Korean laws. This dataset was collected for the purpose of training Polyglot-Ko models, so it will not be released for public use.
35
+
36
+ | Source |Size (GB) | Link |
37
+ |-------------------------------------|---------|------------------------------------------|
38
+ | Korean blog posts | 682.3 | - |
39
+ | Korean news dataset | 87.0 | - |
40
+ | Modu corpus | 19.0 |corpus.korean.go.kr |
41
+ | Korean patent dataset | 26.4 | - |
42
+ | Korean Q & A dataset | 18.1 | - |
43
+ | KcBert dataset | 12.7 | github.com/Beomi/KcBERT |
44
+ | Korean fiction dataset | 6.1 | - |
45
+ | Korean online comments | 4.2 | - |
46
+ | Korean wikipedia | 1.4 | ko.wikipedia.org |
47
+ | Clova Call | < 1.0 | github.com/clovaai/ClovaCall |
48
+ | Naver sentiment movie corpus | < 1.0 | github.com/e9t/nsmc |
49
+ | Korean hate speech dataset | < 1.0 | - |
50
+ | Open subtitles | < 1.0 | opus.nlpl.eu/OpenSubtitles.php |
51
+ | AIHub various tasks datasets | < 1.0 |aihub.or.kr |
52
+ | Standard Korean language dictionary | < 1.0 | stdict.korean.go.kr/main/main.do |
53
+
54
+ Furthermore, in order to avoid the model memorizing and generating personally identifiable information (PII) in the training data, we masked out the following sensitive information in the pre-processing stage:
55
 
56
+ * `<|acc|>` : bank account number
57
+ * `<|rrn|>` : resident registration number
58
+ * `<|tell|>` : phone number
59
 
60
+ ## Training procedure
61
+ Polyglot-Ko-3.8B was trained for 219 billion tokens over 105,000 steps on 256 A100 GPUs with the [GPT-NeoX framework](https://github.com/EleutherAI/gpt-neox). It was trained as an autoregressive language model, using cross-entropy loss to maximize the likelihood of predicting the next token.
62
 
63
  ## How to use
64
 
65
+ This model can be easily loaded using the `AutoModelForCausalLM` class:
66
 
67
  ```python
68
  from transformers import AutoTokenizer, AutoModelForCausalLM
 
71
  model = AutoModelForCausalLM.from_pretrained("EleutherAI/polyglot-ko-3.8b")
72
  ```
73
 
74
+ ## Evaluation results
 
 
 
 
 
 
 
 
 
 
 
 
 
75
 
76
+ We evaluate Polyglot-Ko-3.8B on [KOBEST dataset](https://arxiv.org/abs/2204.04541), a benchmark with 5 downstream tasks, against comparable models skt/ko-gpt-trinity-1.2B-v0.5, kakaobrain/kogpt and facebook/xglm-7.5B, using the prompts provided in the paper.
77
 
78
+ The following tables show the results when the number of few-shot examples differ. You can reproduce these results using the [polyglot branch of lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness/tree/polyglot) and the following scripts. For a fair comparison, all models were run under the same conditions and using the same prompts. In the tables, `n` refers to the number of few-shot examples.
 
 
 
 
 
 
 
 
79
 
80
  ```console
81
  python main.py \
82
  --model gpt2 \
83
+ --model_args pretrained='EleutherAI/polyglot-ko-3.8b' \
84
  --tasks kobest_copa,kobest_hellaswag \
85
  --num_fewshot $YOUR_NUM_FEWSHOT \
86
  --batch_size $YOUR_BATCH_SIZE \
 
88
  --output_path $/path/to/output/
89
  ```
90
 
91
+ **We show model performance on COPA and HellaSwag. On the other three tasks, the evaluated models all performed similarly close to random guessing.**
92
 
93
  ### COPA (F1)
94
 
95
+ | Model | params | n=0 | n=5 | n=10 | n=50 |
96
+ |----------------------------------------------------------------------------------------------|--------|--------|--------|---------|---------|
97
+ | [skt/ko-gpt-trinity-1.2B-v0.5](https://huggingface.co/skt/ko-gpt-trinity-1.2B-v0.5) | 1.2B | 0.6696 | 0.6477 | 0.6419 | 0.6514 |
98
+ | [kakaobrain/kogpt](https://huggingface.co/kakaobrain/kogpt) | 6.0B | 0.7345 | 0.7287 | 0.7277 | 0.7479 |
99
+ | [facebook/xglm-7.5B](https://huggingface.co/facebook/xglm-7.5B) | 7.5B | 0.6723 | 0.6731 | 0.6769 | 0.7119 |
100
+ | [EleutherAI/polyglot-ko-1.3b](https://huggingface.co/EleutherAI/polyglot-ko-1.3b) | 1.3B | 0.7196 | 0.7193 | 0.7204 | 0.7206 |
101
  | **[EleutherAI/polyglot-ko-3.8b](https://huggingface.co/EleutherAI/polyglot-ko-3.8b) (this)** | **3.8B** | **0.7595** | **0.7608** | **0.7638** | **0.7788** |
102
 
103
+ <img src="https://user-images.githubusercontent.com/19511788/192492558-d22d3cb0-dbbb-46fd-83e0-8bf9d81e4e9f.png" width="800px">
104
 
105
  ### HellaSwag (F1)
106
 
107
+ | Model | params |n=0 | n=5 | n=10 | n=50 |
108
  |------------------------------------------------------------------------------------------------|--------|--------|--------|---------|---------|
109
+ | [skt/ko-gpt-trinity-1.2B-v0.5](https://huggingface.co/skt/ko-gpt-trinity-1.2B-v0.5) | 1.2B | 0.4036 | 0.4 | 0.4011 | 0.4214 |
110
+ | [kakaobrain/kogpt](https://huggingface.co/kakaobrain/kogpt) | 6.0B | 0.4599 | 0.456 | 0.4616 | 0.4754 |
111
  | [facebook/xglm-7.5B](https://huggingface.co/facebook/xglm-7.5B) | 7.5B | 0.4261 | 0.437 | 0.4409 | 0.4517 |
112
+ | [EleutherAI/polyglot-ko-1.3b](https://huggingface.co/EleutherAI/polyglot-ko-1.3b) | 1.3B | 0.4013 | 0.3984 | 0.417 | 0.4416 |
113
+ | **[EleutherAI/polyglot-ko-3.8b](https://huggingface.co/EleutherAI/polyglot-ko-3.8b) (this)** | **3.8B** | **0.4438** | **0.4786** | **0.4737** | **0.4822** |
 
 
114
 
115
+ <img src="https://user-images.githubusercontent.com/19511788/192492568-f7114c8a-3967-41fa-a589-31fe07bad85d.png" width="800px">
116
 
117
+ ## Limitations and Biases
118
 
119
+ Polyglot has been trained to optimize next token prediction. Language models such as this are often used for a wide variety of tasks and it is important to be aware of possible unexpected outcomes. For instance, Polyglot will not always return the most factual or accurate response but the most statistically likely one. Polyglot may produce socially unacceptable or offensive content. We recommend having a human curator or other filtering mechanism to censor sensitive content.
120
 
121
  ## Citation and Related Information
122
  ### BibTeX entry
 
148
  limitations under the License.
149
  ```
150
 
 
 
151
  ### Acknowledgement
152
+
153
+ This project was made possible thanks to the computing resources from [Stability.ai](https://stability.ai), and thanks to [TUNiB](https://tunib.ai) for providing a large-scale Korean dataset for this work.