--- language: - ja tags: - causal-lm - not-for-all-audiences - nsfw pipeline_tag: text-generation --- # Sapphire 7B ![plot.png](plot.png) - word score: frequency of erotic words - average complexity: it measures the diversity of the model's output per sentence. It it's low, it means the model tends to be repetitive and/or monotonous. - contextual score: how well the model accords with the given context on a whole - average response length: verbatim result sample: [Sapphire7B.md](Sapphire7B.md) ## Model Description This is a 7B-parameter decoder-only Japanese language model fine-tuned on novel datasets, built on top of the base model Japanese Stable LM Base Gamma 7B. [Japanese Stable LM Instruct Gamma 7B](https://huggingface.co/stabilityai/japanese-stablelm-instruct-gamma-7b) ## Usage Ensure you are using Transformers 4.34.0 or newer. ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("Elizezen/Sapphire-7B") model = AutoModelForCausalLM.from_pretrained( "Elizezen/Sapphire-7B", torch_dtype="auto", ) model.eval() if torch.cuda.is_available(): model = model.to("cuda") input_ids = tokenizer.encode( "吾輩は猫である。名前はまだない",, add_special_tokens=True, return_tensors="pt" ) tokens = model.generate( input_ids.to(device=model.device), max_new_tokens=512, temperature=1, top_p=0.95, do_sample=True, ) out = tokenizer.decode(tokens[0][input_ids.shape[1]:], skip_special_tokens=True).strip() print(out) ``` ### Intended Use The model is mainly intended to be used for generating novels. It may not be so capable with instruction-based responses. Good at both sfw ans nsfw.