--- language: - hi license: apache-2.0 library_name: peft tags: - generated_from_trainer base_model: openai/whisper-tiny datasets: - mozilla-foundation/common_voice_17_0 model-index: - name: Whisper tiny Hindi results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 17.0 type: mozilla-foundation/common_voice_17_0 config: hi split: None args: 'config: hi, split: test' metrics: - name: Wer type: wer value: 44.76572739187418 #'eval/wer': 73.09662131172604, 'eval/normalized_wer': 44.76572739187418 --- # Whisper tiny Hindi This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the Common Voice 17.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.7189 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.575 | 0.4484 | 100 | 0.8603 | | 0.6631 | 0.8969 | 200 | 0.7189 | ### Framework versions - PEFT 0.11.2.dev0 - Transformers 4.41.2 - Pytorch 2.1.2 - Datasets 2.19.3.dev0 - Tokenizers 0.19.1