Pushing deberta-v3-large-sentiment to hub
Browse files- README.md +203 -0
- added_tokens.json +3 -0
- all_results.json +14 -0
- config.json +45 -0
- eval_results.json +8 -0
- pytorch_model.bin +3 -0
- run_test.sh +1 -0
- run_train.sh +1 -0
- special_tokens_map.json +9 -0
- spm.model +3 -0
- test_results.json +8 -0
- tokenizer.json +0 -0
- tokenizer_config.json +16 -0
- trainer_state.json +2155 -0
- training_args.bin +3 -0
README.md
ADDED
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- accuracy
|
7 |
+
model-index:
|
8 |
+
- name: deberta-v3-large-sentiment-lr5e-6-gas2-ls0.0
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# deberta-v3-large-sentiment-lr5e-6-gas2-ls0.0
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on an unknown dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 1.3253
|
20 |
+
- Accuracy: 0.7365
|
21 |
+
|
22 |
+
## Model description
|
23 |
+
|
24 |
+
More information needed
|
25 |
+
|
26 |
+
## Intended uses & limitations
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Training and evaluation data
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training procedure
|
35 |
+
|
36 |
+
### Training hyperparameters
|
37 |
+
|
38 |
+
The following hyperparameters were used during training:
|
39 |
+
- learning_rate: 5e-06
|
40 |
+
- train_batch_size: 16
|
41 |
+
- eval_batch_size: 16
|
42 |
+
- seed: 42
|
43 |
+
- gradient_accumulation_steps: 2
|
44 |
+
- total_train_batch_size: 32
|
45 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
46 |
+
- lr_scheduler_type: linear
|
47 |
+
- lr_scheduler_warmup_steps: 50
|
48 |
+
- num_epochs: 10.0
|
49 |
+
|
50 |
+
### Training results
|
51 |
+
|
52 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
53 |
+
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
|
54 |
+
| 1.0614 | 0.07 | 100 | 1.0196 | 0.4345 |
|
55 |
+
| 0.8601 | 0.14 | 200 | 0.7561 | 0.6460 |
|
56 |
+
| 0.734 | 0.21 | 300 | 0.6796 | 0.6955 |
|
57 |
+
| 0.6753 | 0.28 | 400 | 0.6521 | 0.7000 |
|
58 |
+
| 0.6408 | 0.35 | 500 | 0.6119 | 0.7440 |
|
59 |
+
| 0.5991 | 0.42 | 600 | 0.6034 | 0.7370 |
|
60 |
+
| 0.6069 | 0.49 | 700 | 0.5976 | 0.7375 |
|
61 |
+
| 0.6122 | 0.56 | 800 | 0.5871 | 0.7425 |
|
62 |
+
| 0.5908 | 0.63 | 900 | 0.5935 | 0.7445 |
|
63 |
+
| 0.5884 | 0.7 | 1000 | 0.5792 | 0.7520 |
|
64 |
+
| 0.5839 | 0.77 | 1100 | 0.5780 | 0.7555 |
|
65 |
+
| 0.5772 | 0.84 | 1200 | 0.5727 | 0.7570 |
|
66 |
+
| 0.5895 | 0.91 | 1300 | 0.5601 | 0.7550 |
|
67 |
+
| 0.5757 | 0.98 | 1400 | 0.5613 | 0.7525 |
|
68 |
+
| 0.5121 | 1.05 | 1500 | 0.5867 | 0.7600 |
|
69 |
+
| 0.5254 | 1.12 | 1600 | 0.5595 | 0.7630 |
|
70 |
+
| 0.5074 | 1.19 | 1700 | 0.5594 | 0.7585 |
|
71 |
+
| 0.4947 | 1.26 | 1800 | 0.5697 | 0.7575 |
|
72 |
+
| 0.5019 | 1.33 | 1900 | 0.5665 | 0.7580 |
|
73 |
+
| 0.5005 | 1.4 | 2000 | 0.5484 | 0.7655 |
|
74 |
+
| 0.5125 | 1.47 | 2100 | 0.5626 | 0.7605 |
|
75 |
+
| 0.5241 | 1.54 | 2200 | 0.5561 | 0.7560 |
|
76 |
+
| 0.5198 | 1.61 | 2300 | 0.5602 | 0.7600 |
|
77 |
+
| 0.5124 | 1.68 | 2400 | 0.5654 | 0.7490 |
|
78 |
+
| 0.5096 | 1.75 | 2500 | 0.5803 | 0.7515 |
|
79 |
+
| 0.4885 | 1.82 | 2600 | 0.5889 | 0.75 |
|
80 |
+
| 0.5111 | 1.89 | 2700 | 0.5508 | 0.7665 |
|
81 |
+
| 0.4868 | 1.96 | 2800 | 0.5621 | 0.7635 |
|
82 |
+
| 0.4599 | 2.04 | 2900 | 0.5995 | 0.7615 |
|
83 |
+
| 0.4147 | 2.11 | 3000 | 0.6202 | 0.7530 |
|
84 |
+
| 0.4233 | 2.18 | 3100 | 0.5875 | 0.7625 |
|
85 |
+
| 0.4324 | 2.25 | 3200 | 0.5794 | 0.7610 |
|
86 |
+
| 0.4141 | 2.32 | 3300 | 0.5902 | 0.7460 |
|
87 |
+
| 0.4306 | 2.39 | 3400 | 0.6053 | 0.7545 |
|
88 |
+
| 0.4266 | 2.46 | 3500 | 0.5979 | 0.7570 |
|
89 |
+
| 0.4227 | 2.53 | 3600 | 0.5920 | 0.7650 |
|
90 |
+
| 0.4226 | 2.6 | 3700 | 0.6166 | 0.7455 |
|
91 |
+
| 0.3978 | 2.67 | 3800 | 0.6126 | 0.7560 |
|
92 |
+
| 0.3954 | 2.74 | 3900 | 0.6152 | 0.7550 |
|
93 |
+
| 0.4209 | 2.81 | 4000 | 0.5980 | 0.75 |
|
94 |
+
| 0.3982 | 2.88 | 4100 | 0.6096 | 0.7490 |
|
95 |
+
| 0.4016 | 2.95 | 4200 | 0.6541 | 0.7425 |
|
96 |
+
| 0.3966 | 3.02 | 4300 | 0.6377 | 0.7545 |
|
97 |
+
| 0.3074 | 3.09 | 4400 | 0.6860 | 0.75 |
|
98 |
+
| 0.3551 | 3.16 | 4500 | 0.6160 | 0.7550 |
|
99 |
+
| 0.3323 | 3.23 | 4600 | 0.6714 | 0.7520 |
|
100 |
+
| 0.3171 | 3.3 | 4700 | 0.6538 | 0.7535 |
|
101 |
+
| 0.3403 | 3.37 | 4800 | 0.6774 | 0.7465 |
|
102 |
+
| 0.3396 | 3.44 | 4900 | 0.6726 | 0.7465 |
|
103 |
+
| 0.3259 | 3.51 | 5000 | 0.6465 | 0.7480 |
|
104 |
+
| 0.3392 | 3.58 | 5100 | 0.6860 | 0.7460 |
|
105 |
+
| 0.3251 | 3.65 | 5200 | 0.6697 | 0.7495 |
|
106 |
+
| 0.3253 | 3.72 | 5300 | 0.6770 | 0.7430 |
|
107 |
+
| 0.3455 | 3.79 | 5400 | 0.7177 | 0.7360 |
|
108 |
+
| 0.3323 | 3.86 | 5500 | 0.6943 | 0.7400 |
|
109 |
+
| 0.3335 | 3.93 | 5600 | 0.6507 | 0.7555 |
|
110 |
+
| 0.3368 | 4.0 | 5700 | 0.6580 | 0.7485 |
|
111 |
+
| 0.2479 | 4.07 | 5800 | 0.7667 | 0.7430 |
|
112 |
+
| 0.2613 | 4.14 | 5900 | 0.7513 | 0.7505 |
|
113 |
+
| 0.2557 | 4.21 | 6000 | 0.7927 | 0.7485 |
|
114 |
+
| 0.243 | 4.28 | 6100 | 0.7792 | 0.7450 |
|
115 |
+
| 0.2473 | 4.35 | 6200 | 0.8107 | 0.7355 |
|
116 |
+
| 0.2447 | 4.42 | 6300 | 0.7851 | 0.7370 |
|
117 |
+
| 0.2515 | 4.49 | 6400 | 0.7529 | 0.7465 |
|
118 |
+
| 0.274 | 4.56 | 6500 | 0.7390 | 0.7465 |
|
119 |
+
| 0.2674 | 4.63 | 6600 | 0.7658 | 0.7460 |
|
120 |
+
| 0.2416 | 4.7 | 6700 | 0.7915 | 0.7485 |
|
121 |
+
| 0.2432 | 4.77 | 6800 | 0.7989 | 0.7435 |
|
122 |
+
| 0.2595 | 4.84 | 6900 | 0.7850 | 0.7380 |
|
123 |
+
| 0.2736 | 4.91 | 7000 | 0.7577 | 0.7395 |
|
124 |
+
| 0.2783 | 4.98 | 7100 | 0.7650 | 0.7405 |
|
125 |
+
| 0.2304 | 5.05 | 7200 | 0.8542 | 0.7385 |
|
126 |
+
| 0.1937 | 5.12 | 7300 | 0.8390 | 0.7345 |
|
127 |
+
| 0.1878 | 5.19 | 7400 | 0.9150 | 0.7330 |
|
128 |
+
| 0.1921 | 5.26 | 7500 | 0.8792 | 0.7405 |
|
129 |
+
| 0.1916 | 5.33 | 7600 | 0.8892 | 0.7410 |
|
130 |
+
| 0.2011 | 5.4 | 7700 | 0.9012 | 0.7325 |
|
131 |
+
| 0.211 | 5.47 | 7800 | 0.8608 | 0.7420 |
|
132 |
+
| 0.2194 | 5.54 | 7900 | 0.8852 | 0.7320 |
|
133 |
+
| 0.205 | 5.61 | 8000 | 0.8803 | 0.7385 |
|
134 |
+
| 0.1981 | 5.68 | 8100 | 0.8681 | 0.7330 |
|
135 |
+
| 0.1908 | 5.75 | 8200 | 0.9020 | 0.7435 |
|
136 |
+
| 0.1942 | 5.82 | 8300 | 0.8780 | 0.7410 |
|
137 |
+
| 0.1958 | 5.89 | 8400 | 0.8937 | 0.7345 |
|
138 |
+
| 0.1883 | 5.96 | 8500 | 0.9121 | 0.7360 |
|
139 |
+
| 0.1819 | 6.04 | 8600 | 0.9409 | 0.7430 |
|
140 |
+
| 0.145 | 6.11 | 8700 | 1.1390 | 0.7265 |
|
141 |
+
| 0.1696 | 6.18 | 8800 | 0.9189 | 0.7430 |
|
142 |
+
| 0.1488 | 6.25 | 8900 | 0.9718 | 0.7400 |
|
143 |
+
| 0.1637 | 6.32 | 9000 | 0.9702 | 0.7450 |
|
144 |
+
| 0.1547 | 6.39 | 9100 | 1.0033 | 0.7410 |
|
145 |
+
| 0.1605 | 6.46 | 9200 | 0.9973 | 0.7355 |
|
146 |
+
| 0.1552 | 6.53 | 9300 | 1.0491 | 0.7290 |
|
147 |
+
| 0.1731 | 6.6 | 9400 | 1.0271 | 0.7335 |
|
148 |
+
| 0.1738 | 6.67 | 9500 | 0.9575 | 0.7430 |
|
149 |
+
| 0.1669 | 6.74 | 9600 | 0.9614 | 0.7350 |
|
150 |
+
| 0.1347 | 6.81 | 9700 | 1.0263 | 0.7365 |
|
151 |
+
| 0.1593 | 6.88 | 9800 | 1.0173 | 0.7360 |
|
152 |
+
| 0.1549 | 6.95 | 9900 | 1.0398 | 0.7350 |
|
153 |
+
| 0.1675 | 7.02 | 10000 | 0.9975 | 0.7380 |
|
154 |
+
| 0.1182 | 7.09 | 10100 | 1.1059 | 0.7350 |
|
155 |
+
| 0.1351 | 7.16 | 10200 | 1.0933 | 0.7400 |
|
156 |
+
| 0.1496 | 7.23 | 10300 | 1.0731 | 0.7355 |
|
157 |
+
| 0.1197 | 7.3 | 10400 | 1.1089 | 0.7360 |
|
158 |
+
| 0.1111 | 7.37 | 10500 | 1.1381 | 0.7405 |
|
159 |
+
| 0.1494 | 7.44 | 10600 | 1.0252 | 0.7425 |
|
160 |
+
| 0.1235 | 7.51 | 10700 | 1.0906 | 0.7360 |
|
161 |
+
| 0.133 | 7.58 | 10800 | 1.1796 | 0.7375 |
|
162 |
+
| 0.1248 | 7.65 | 10900 | 1.1332 | 0.7420 |
|
163 |
+
| 0.1268 | 7.72 | 11000 | 1.1304 | 0.7415 |
|
164 |
+
| 0.1368 | 7.79 | 11100 | 1.1345 | 0.7380 |
|
165 |
+
| 0.1228 | 7.86 | 11200 | 1.2018 | 0.7320 |
|
166 |
+
| 0.1281 | 7.93 | 11300 | 1.1884 | 0.7350 |
|
167 |
+
| 0.1449 | 8.0 | 11400 | 1.1571 | 0.7345 |
|
168 |
+
| 0.1025 | 8.07 | 11500 | 1.1538 | 0.7345 |
|
169 |
+
| 0.1199 | 8.14 | 11600 | 1.2113 | 0.7390 |
|
170 |
+
| 0.1016 | 8.21 | 11700 | 1.2882 | 0.7370 |
|
171 |
+
| 0.114 | 8.28 | 11800 | 1.2872 | 0.7390 |
|
172 |
+
| 0.1019 | 8.35 | 11900 | 1.2876 | 0.7380 |
|
173 |
+
| 0.1142 | 8.42 | 12000 | 1.2791 | 0.7385 |
|
174 |
+
| 0.1135 | 8.49 | 12100 | 1.2883 | 0.7380 |
|
175 |
+
| 0.1139 | 8.56 | 12200 | 1.2829 | 0.7360 |
|
176 |
+
| 0.1107 | 8.63 | 12300 | 1.2698 | 0.7365 |
|
177 |
+
| 0.1183 | 8.7 | 12400 | 1.2660 | 0.7345 |
|
178 |
+
| 0.1064 | 8.77 | 12500 | 1.2889 | 0.7365 |
|
179 |
+
| 0.0895 | 8.84 | 12600 | 1.3480 | 0.7330 |
|
180 |
+
| 0.1244 | 8.91 | 12700 | 1.2872 | 0.7325 |
|
181 |
+
| 0.1209 | 8.98 | 12800 | 1.2681 | 0.7375 |
|
182 |
+
| 0.1144 | 9.05 | 12900 | 1.2711 | 0.7370 |
|
183 |
+
| 0.1034 | 9.12 | 13000 | 1.2801 | 0.7360 |
|
184 |
+
| 0.113 | 9.19 | 13100 | 1.2801 | 0.7350 |
|
185 |
+
| 0.0994 | 9.26 | 13200 | 1.2920 | 0.7360 |
|
186 |
+
| 0.0966 | 9.33 | 13300 | 1.2761 | 0.7335 |
|
187 |
+
| 0.0939 | 9.4 | 13400 | 1.2909 | 0.7365 |
|
188 |
+
| 0.0975 | 9.47 | 13500 | 1.2953 | 0.7360 |
|
189 |
+
| 0.0842 | 9.54 | 13600 | 1.3179 | 0.7335 |
|
190 |
+
| 0.0871 | 9.61 | 13700 | 1.3149 | 0.7385 |
|
191 |
+
| 0.1162 | 9.68 | 13800 | 1.3124 | 0.7350 |
|
192 |
+
| 0.085 | 9.75 | 13900 | 1.3207 | 0.7355 |
|
193 |
+
| 0.0966 | 9.82 | 14000 | 1.3248 | 0.7335 |
|
194 |
+
| 0.1064 | 9.89 | 14100 | 1.3261 | 0.7335 |
|
195 |
+
| 0.1046 | 9.96 | 14200 | 1.3255 | 0.7360 |
|
196 |
+
|
197 |
+
|
198 |
+
### Framework versions
|
199 |
+
|
200 |
+
- Transformers 4.20.0.dev0
|
201 |
+
- Pytorch 1.9.0
|
202 |
+
- Datasets 2.2.2
|
203 |
+
- Tokenizers 0.11.6
|
added_tokens.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"[MASK]": 128000
|
3 |
+
}
|
all_results.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 10.0,
|
3 |
+
"eval_accuracy": 0.7365000247955322,
|
4 |
+
"eval_loss": 1.3253138065338135,
|
5 |
+
"eval_runtime": 22.8646,
|
6 |
+
"eval_samples": 2000,
|
7 |
+
"eval_samples_per_second": 87.472,
|
8 |
+
"eval_steps_per_second": 5.467,
|
9 |
+
"train_loss": 0.2872312853629129,
|
10 |
+
"train_runtime": 13159.309,
|
11 |
+
"train_samples": 45615,
|
12 |
+
"train_samples_per_second": 34.664,
|
13 |
+
"train_steps_per_second": 1.083
|
14 |
+
}
|
config.json
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "microsoft/deberta-v3-large",
|
3 |
+
"architectures": [
|
4 |
+
"DebertaV2ForSequenceClassification"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"hidden_act": "gelu",
|
8 |
+
"hidden_dropout_prob": 0.1,
|
9 |
+
"hidden_size": 1024,
|
10 |
+
"id2label": {
|
11 |
+
"0": 0,
|
12 |
+
"1": 1,
|
13 |
+
"2": 2
|
14 |
+
},
|
15 |
+
"initializer_range": 0.02,
|
16 |
+
"intermediate_size": 4096,
|
17 |
+
"label2id": {
|
18 |
+
"0": 0,
|
19 |
+
"1": 1,
|
20 |
+
"2": 2
|
21 |
+
},
|
22 |
+
"layer_norm_eps": 1e-07,
|
23 |
+
"max_position_embeddings": 512,
|
24 |
+
"max_relative_positions": -1,
|
25 |
+
"model_type": "deberta-v2",
|
26 |
+
"norm_rel_ebd": "layer_norm",
|
27 |
+
"num_attention_heads": 16,
|
28 |
+
"num_hidden_layers": 24,
|
29 |
+
"pad_token_id": 0,
|
30 |
+
"pooler_dropout": 0,
|
31 |
+
"pooler_hidden_act": "gelu",
|
32 |
+
"pooler_hidden_size": 1024,
|
33 |
+
"pos_att_type": [
|
34 |
+
"p2c",
|
35 |
+
"c2p"
|
36 |
+
],
|
37 |
+
"position_biased_input": false,
|
38 |
+
"position_buckets": 256,
|
39 |
+
"relative_attention": true,
|
40 |
+
"share_att_key": true,
|
41 |
+
"torch_dtype": "float32",
|
42 |
+
"transformers_version": "4.20.0.dev0",
|
43 |
+
"type_vocab_size": 0,
|
44 |
+
"vocab_size": 128100
|
45 |
+
}
|
eval_results.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"eval_accuracy": 0.7664999961853027,
|
3 |
+
"eval_loss": 0.5507832169532776,
|
4 |
+
"eval_runtime": 19.7263,
|
5 |
+
"eval_samples": 2000,
|
6 |
+
"eval_samples_per_second": 101.388,
|
7 |
+
"eval_steps_per_second": 6.337
|
8 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f18728f5092fa44baf80f9c8962a3fccc3cf3a7cbf397fc4ca6de735d50a7f73
|
3 |
+
size 1740397483
|
run_test.sh
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
jbsub -queue x86_1h -cores 4+1 -mem 30g -require a100 -o outputs/train/tweet_eval2/sentiment/deberta-v3-large-sentiment-lr5e-6-gas2-ls0.0/test.log /dccstor/tslm/envs/anaconda3/envs/tslm-gen/bin/python train_clf.py --model_name_or_path outputs/train/tweet_eval2/sentiment/deberta-v3-large-sentiment-lr5e-6-gas2-ls0.0/best_checkpoint --train_file data/tweet_eval/sentiment/train.csv --validation_file data/tweet_eval/sentiment/validation.csv --test_file data/tweet_eval/sentiment/test.csv --do_eval --do_predict --report_to none --per_device_eval_batch_size 16 --max_seq_length 256 --output_dir outputs/train/tweet_eval2/sentiment/deberta-v3-large-sentiment-lr5e-6-gas2-ls0.0/best_checkpoint
|
run_train.sh
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
jbsub -queue x86_6h -cores 4+1 -mem 30g -require a100 -o outputs/train/tweet_eval2/sentiment/deberta-v3-large-sentiment-lr5e-6-gas2-ls0.0/train.log /dccstor/tslm/envs/anaconda3/envs/tslm-gen/bin/python train_clf.py --model_name_or_path microsoft/deberta-v3-large --train_file data/tweet_eval/sentiment/train.csv --validation_file data/tweet_eval/sentiment/validation.csv --do_train --do_eval --per_device_train_batch_size 16 --per_device_eval_batch_size 16 --max_seq_length 256 --learning_rate 5e-6 --output_dir outputs/train/tweet_eval2/sentiment/deberta-v3-large-sentiment-lr5e-6-gas2-ls0.0 --evaluation_strategy steps --save_strategy no --warmup_steps 50 --num_train_epochs 10 --overwrite_output_dir --logging_steps 100 --gradient_accumulation_steps 2 --label_smoothing_factor 0.0 --report_to clearml --metric_for_best_model accuracy --logging_dir outputs/train/tweet_eval2/sentiment/deberta-v3-large-sentiment-lr5e-6-gas2-ls0.0/tb \; rm -rf outputs/train/tweet_eval2/sentiment/deberta-v3-large-sentiment-lr5e-6-gas2-ls0.0/tb \; rm -rf outputs/train/tweet_eval2/sentiment/deberta-v3-large-sentiment-lr5e-6-gas2-ls0.0/checkpoint-* \; . outputs/train/tweet_eval2/sentiment/deberta-v3-large-sentiment-lr5e-6-gas2-ls0.0/run_test.sh
|
special_tokens_map.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "[CLS]",
|
3 |
+
"cls_token": "[CLS]",
|
4 |
+
"eos_token": "[SEP]",
|
5 |
+
"mask_token": "[MASK]",
|
6 |
+
"pad_token": "[PAD]",
|
7 |
+
"sep_token": "[SEP]",
|
8 |
+
"unk_token": "[UNK]"
|
9 |
+
}
|
spm.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c679fbf93643d19aab7ee10c0b99e460bdbc02fedf34b92b05af343b4af586fd
|
3 |
+
size 2464616
|
test_results.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"eval_accuracy": 0.7393357157707214,
|
3 |
+
"eval_loss": 0.5786939859390259,
|
4 |
+
"eval_runtime": 134.3696,
|
5 |
+
"eval_samples_per_second": 91.419,
|
6 |
+
"eval_steps_per_second": 5.716,
|
7 |
+
"test_samples": 12284
|
8 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "[CLS]",
|
3 |
+
"cls_token": "[CLS]",
|
4 |
+
"do_lower_case": false,
|
5 |
+
"eos_token": "[SEP]",
|
6 |
+
"mask_token": "[MASK]",
|
7 |
+
"name_or_path": "microsoft/deberta-v3-large",
|
8 |
+
"pad_token": "[PAD]",
|
9 |
+
"sep_token": "[SEP]",
|
10 |
+
"sp_model_kwargs": {},
|
11 |
+
"special_tokens_map_file": null,
|
12 |
+
"split_by_punct": false,
|
13 |
+
"tokenizer_class": "DebertaV2Tokenizer",
|
14 |
+
"unk_token": "[UNK]",
|
15 |
+
"vocab_type": "spm"
|
16 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,2155 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 9.99964924587864,
|
5 |
+
"global_step": 14250,
|
6 |
+
"is_hyper_param_search": false,
|
7 |
+
"is_local_process_zero": true,
|
8 |
+
"is_world_process_zero": true,
|
9 |
+
"log_history": [
|
10 |
+
{
|
11 |
+
"epoch": 0.07,
|
12 |
+
"learning_rate": 4.982394366197183e-06,
|
13 |
+
"loss": 1.0614,
|
14 |
+
"step": 100
|
15 |
+
},
|
16 |
+
{
|
17 |
+
"epoch": 0.07,
|
18 |
+
"eval_accuracy": 0.4345000088214874,
|
19 |
+
"eval_loss": 1.019625186920166,
|
20 |
+
"eval_runtime": 18.8668,
|
21 |
+
"eval_samples_per_second": 106.006,
|
22 |
+
"eval_steps_per_second": 6.625,
|
23 |
+
"step": 100
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.14,
|
27 |
+
"learning_rate": 4.94718309859155e-06,
|
28 |
+
"loss": 0.8601,
|
29 |
+
"step": 200
|
30 |
+
},
|
31 |
+
{
|
32 |
+
"epoch": 0.14,
|
33 |
+
"eval_accuracy": 0.6460000276565552,
|
34 |
+
"eval_loss": 0.756058931350708,
|
35 |
+
"eval_runtime": 19.8113,
|
36 |
+
"eval_samples_per_second": 100.953,
|
37 |
+
"eval_steps_per_second": 6.31,
|
38 |
+
"step": 200
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"epoch": 0.21,
|
42 |
+
"learning_rate": 4.911971830985916e-06,
|
43 |
+
"loss": 0.734,
|
44 |
+
"step": 300
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.21,
|
48 |
+
"eval_accuracy": 0.6955000162124634,
|
49 |
+
"eval_loss": 0.6796478629112244,
|
50 |
+
"eval_runtime": 19.6375,
|
51 |
+
"eval_samples_per_second": 101.846,
|
52 |
+
"eval_steps_per_second": 6.365,
|
53 |
+
"step": 300
|
54 |
+
},
|
55 |
+
{
|
56 |
+
"epoch": 0.28,
|
57 |
+
"learning_rate": 4.876760563380282e-06,
|
58 |
+
"loss": 0.6753,
|
59 |
+
"step": 400
|
60 |
+
},
|
61 |
+
{
|
62 |
+
"epoch": 0.28,
|
63 |
+
"eval_accuracy": 0.699999988079071,
|
64 |
+
"eval_loss": 0.6520820260047913,
|
65 |
+
"eval_runtime": 18.2758,
|
66 |
+
"eval_samples_per_second": 109.434,
|
67 |
+
"eval_steps_per_second": 6.84,
|
68 |
+
"step": 400
|
69 |
+
},
|
70 |
+
{
|
71 |
+
"epoch": 0.35,
|
72 |
+
"learning_rate": 4.841549295774649e-06,
|
73 |
+
"loss": 0.6408,
|
74 |
+
"step": 500
|
75 |
+
},
|
76 |
+
{
|
77 |
+
"epoch": 0.35,
|
78 |
+
"eval_accuracy": 0.7440000176429749,
|
79 |
+
"eval_loss": 0.6119081974029541,
|
80 |
+
"eval_runtime": 17.8217,
|
81 |
+
"eval_samples_per_second": 112.223,
|
82 |
+
"eval_steps_per_second": 7.014,
|
83 |
+
"step": 500
|
84 |
+
},
|
85 |
+
{
|
86 |
+
"epoch": 0.42,
|
87 |
+
"learning_rate": 4.806338028169015e-06,
|
88 |
+
"loss": 0.5991,
|
89 |
+
"step": 600
|
90 |
+
},
|
91 |
+
{
|
92 |
+
"epoch": 0.42,
|
93 |
+
"eval_accuracy": 0.7369999885559082,
|
94 |
+
"eval_loss": 0.6033942699432373,
|
95 |
+
"eval_runtime": 17.3933,
|
96 |
+
"eval_samples_per_second": 114.986,
|
97 |
+
"eval_steps_per_second": 7.187,
|
98 |
+
"step": 600
|
99 |
+
},
|
100 |
+
{
|
101 |
+
"epoch": 0.49,
|
102 |
+
"learning_rate": 4.771126760563381e-06,
|
103 |
+
"loss": 0.6069,
|
104 |
+
"step": 700
|
105 |
+
},
|
106 |
+
{
|
107 |
+
"epoch": 0.49,
|
108 |
+
"eval_accuracy": 0.737500011920929,
|
109 |
+
"eval_loss": 0.597550630569458,
|
110 |
+
"eval_runtime": 20.251,
|
111 |
+
"eval_samples_per_second": 98.76,
|
112 |
+
"eval_steps_per_second": 6.173,
|
113 |
+
"step": 700
|
114 |
+
},
|
115 |
+
{
|
116 |
+
"epoch": 0.56,
|
117 |
+
"learning_rate": 4.735915492957747e-06,
|
118 |
+
"loss": 0.6122,
|
119 |
+
"step": 800
|
120 |
+
},
|
121 |
+
{
|
122 |
+
"epoch": 0.56,
|
123 |
+
"eval_accuracy": 0.7425000071525574,
|
124 |
+
"eval_loss": 0.5870603322982788,
|
125 |
+
"eval_runtime": 21.2152,
|
126 |
+
"eval_samples_per_second": 94.272,
|
127 |
+
"eval_steps_per_second": 5.892,
|
128 |
+
"step": 800
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 0.63,
|
132 |
+
"learning_rate": 4.7007042253521126e-06,
|
133 |
+
"loss": 0.5908,
|
134 |
+
"step": 900
|
135 |
+
},
|
136 |
+
{
|
137 |
+
"epoch": 0.63,
|
138 |
+
"eval_accuracy": 0.7444999814033508,
|
139 |
+
"eval_loss": 0.5935022234916687,
|
140 |
+
"eval_runtime": 22.0881,
|
141 |
+
"eval_samples_per_second": 90.546,
|
142 |
+
"eval_steps_per_second": 5.659,
|
143 |
+
"step": 900
|
144 |
+
},
|
145 |
+
{
|
146 |
+
"epoch": 0.7,
|
147 |
+
"learning_rate": 4.665492957746479e-06,
|
148 |
+
"loss": 0.5884,
|
149 |
+
"step": 1000
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"epoch": 0.7,
|
153 |
+
"eval_accuracy": 0.7519999742507935,
|
154 |
+
"eval_loss": 0.5792337656021118,
|
155 |
+
"eval_runtime": 17.6606,
|
156 |
+
"eval_samples_per_second": 113.246,
|
157 |
+
"eval_steps_per_second": 7.078,
|
158 |
+
"step": 1000
|
159 |
+
},
|
160 |
+
{
|
161 |
+
"epoch": 0.77,
|
162 |
+
"learning_rate": 4.630281690140845e-06,
|
163 |
+
"loss": 0.5839,
|
164 |
+
"step": 1100
|
165 |
+
},
|
166 |
+
{
|
167 |
+
"epoch": 0.77,
|
168 |
+
"eval_accuracy": 0.7555000185966492,
|
169 |
+
"eval_loss": 0.578044056892395,
|
170 |
+
"eval_runtime": 15.9931,
|
171 |
+
"eval_samples_per_second": 125.054,
|
172 |
+
"eval_steps_per_second": 7.816,
|
173 |
+
"step": 1100
|
174 |
+
},
|
175 |
+
{
|
176 |
+
"epoch": 0.84,
|
177 |
+
"learning_rate": 4.595070422535211e-06,
|
178 |
+
"loss": 0.5772,
|
179 |
+
"step": 1200
|
180 |
+
},
|
181 |
+
{
|
182 |
+
"epoch": 0.84,
|
183 |
+
"eval_accuracy": 0.7570000290870667,
|
184 |
+
"eval_loss": 0.5727072954177856,
|
185 |
+
"eval_runtime": 21.5937,
|
186 |
+
"eval_samples_per_second": 92.62,
|
187 |
+
"eval_steps_per_second": 5.789,
|
188 |
+
"step": 1200
|
189 |
+
},
|
190 |
+
{
|
191 |
+
"epoch": 0.91,
|
192 |
+
"learning_rate": 4.559859154929578e-06,
|
193 |
+
"loss": 0.5895,
|
194 |
+
"step": 1300
|
195 |
+
},
|
196 |
+
{
|
197 |
+
"epoch": 0.91,
|
198 |
+
"eval_accuracy": 0.7549999952316284,
|
199 |
+
"eval_loss": 0.5601378679275513,
|
200 |
+
"eval_runtime": 20.1543,
|
201 |
+
"eval_samples_per_second": 99.234,
|
202 |
+
"eval_steps_per_second": 6.202,
|
203 |
+
"step": 1300
|
204 |
+
},
|
205 |
+
{
|
206 |
+
"epoch": 0.98,
|
207 |
+
"learning_rate": 4.524647887323944e-06,
|
208 |
+
"loss": 0.5757,
|
209 |
+
"step": 1400
|
210 |
+
},
|
211 |
+
{
|
212 |
+
"epoch": 0.98,
|
213 |
+
"eval_accuracy": 0.7524999976158142,
|
214 |
+
"eval_loss": 0.561326801776886,
|
215 |
+
"eval_runtime": 15.0299,
|
216 |
+
"eval_samples_per_second": 133.068,
|
217 |
+
"eval_steps_per_second": 8.317,
|
218 |
+
"step": 1400
|
219 |
+
},
|
220 |
+
{
|
221 |
+
"epoch": 1.05,
|
222 |
+
"learning_rate": 4.489436619718311e-06,
|
223 |
+
"loss": 0.5121,
|
224 |
+
"step": 1500
|
225 |
+
},
|
226 |
+
{
|
227 |
+
"epoch": 1.05,
|
228 |
+
"eval_accuracy": 0.7599999904632568,
|
229 |
+
"eval_loss": 0.5866703987121582,
|
230 |
+
"eval_runtime": 18.2735,
|
231 |
+
"eval_samples_per_second": 109.448,
|
232 |
+
"eval_steps_per_second": 6.841,
|
233 |
+
"step": 1500
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"epoch": 1.12,
|
237 |
+
"learning_rate": 4.454225352112677e-06,
|
238 |
+
"loss": 0.5254,
|
239 |
+
"step": 1600
|
240 |
+
},
|
241 |
+
{
|
242 |
+
"epoch": 1.12,
|
243 |
+
"eval_accuracy": 0.7630000114440918,
|
244 |
+
"eval_loss": 0.5595362186431885,
|
245 |
+
"eval_runtime": 21.9878,
|
246 |
+
"eval_samples_per_second": 90.959,
|
247 |
+
"eval_steps_per_second": 5.685,
|
248 |
+
"step": 1600
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"epoch": 1.19,
|
252 |
+
"learning_rate": 4.419014084507043e-06,
|
253 |
+
"loss": 0.5074,
|
254 |
+
"step": 1700
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 1.19,
|
258 |
+
"eval_accuracy": 0.7584999799728394,
|
259 |
+
"eval_loss": 0.559354841709137,
|
260 |
+
"eval_runtime": 19.9155,
|
261 |
+
"eval_samples_per_second": 100.424,
|
262 |
+
"eval_steps_per_second": 6.277,
|
263 |
+
"step": 1700
|
264 |
+
},
|
265 |
+
{
|
266 |
+
"epoch": 1.26,
|
267 |
+
"learning_rate": 4.383802816901409e-06,
|
268 |
+
"loss": 0.4947,
|
269 |
+
"step": 1800
|
270 |
+
},
|
271 |
+
{
|
272 |
+
"epoch": 1.26,
|
273 |
+
"eval_accuracy": 0.7574999928474426,
|
274 |
+
"eval_loss": 0.5696709156036377,
|
275 |
+
"eval_runtime": 22.8735,
|
276 |
+
"eval_samples_per_second": 87.438,
|
277 |
+
"eval_steps_per_second": 5.465,
|
278 |
+
"step": 1800
|
279 |
+
},
|
280 |
+
{
|
281 |
+
"epoch": 1.33,
|
282 |
+
"learning_rate": 4.3485915492957745e-06,
|
283 |
+
"loss": 0.5019,
|
284 |
+
"step": 1900
|
285 |
+
},
|
286 |
+
{
|
287 |
+
"epoch": 1.33,
|
288 |
+
"eval_accuracy": 0.7580000162124634,
|
289 |
+
"eval_loss": 0.5664528608322144,
|
290 |
+
"eval_runtime": 22.2002,
|
291 |
+
"eval_samples_per_second": 90.089,
|
292 |
+
"eval_steps_per_second": 5.631,
|
293 |
+
"step": 1900
|
294 |
+
},
|
295 |
+
{
|
296 |
+
"epoch": 1.4,
|
297 |
+
"learning_rate": 4.313380281690141e-06,
|
298 |
+
"loss": 0.5005,
|
299 |
+
"step": 2000
|
300 |
+
},
|
301 |
+
{
|
302 |
+
"epoch": 1.4,
|
303 |
+
"eval_accuracy": 0.765500009059906,
|
304 |
+
"eval_loss": 0.5484071969985962,
|
305 |
+
"eval_runtime": 21.9941,
|
306 |
+
"eval_samples_per_second": 90.934,
|
307 |
+
"eval_steps_per_second": 5.683,
|
308 |
+
"step": 2000
|
309 |
+
},
|
310 |
+
{
|
311 |
+
"epoch": 1.47,
|
312 |
+
"learning_rate": 4.278169014084507e-06,
|
313 |
+
"loss": 0.5125,
|
314 |
+
"step": 2100
|
315 |
+
},
|
316 |
+
{
|
317 |
+
"epoch": 1.47,
|
318 |
+
"eval_accuracy": 0.7605000138282776,
|
319 |
+
"eval_loss": 0.5626400709152222,
|
320 |
+
"eval_runtime": 17.7868,
|
321 |
+
"eval_samples_per_second": 112.443,
|
322 |
+
"eval_steps_per_second": 7.028,
|
323 |
+
"step": 2100
|
324 |
+
},
|
325 |
+
{
|
326 |
+
"epoch": 1.54,
|
327 |
+
"learning_rate": 4.242957746478873e-06,
|
328 |
+
"loss": 0.5241,
|
329 |
+
"step": 2200
|
330 |
+
},
|
331 |
+
{
|
332 |
+
"epoch": 1.54,
|
333 |
+
"eval_accuracy": 0.7559999823570251,
|
334 |
+
"eval_loss": 0.556066632270813,
|
335 |
+
"eval_runtime": 18.9121,
|
336 |
+
"eval_samples_per_second": 105.753,
|
337 |
+
"eval_steps_per_second": 6.61,
|
338 |
+
"step": 2200
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"epoch": 1.61,
|
342 |
+
"learning_rate": 4.20774647887324e-06,
|
343 |
+
"loss": 0.5198,
|
344 |
+
"step": 2300
|
345 |
+
},
|
346 |
+
{
|
347 |
+
"epoch": 1.61,
|
348 |
+
"eval_accuracy": 0.7599999904632568,
|
349 |
+
"eval_loss": 0.560243546962738,
|
350 |
+
"eval_runtime": 20.0908,
|
351 |
+
"eval_samples_per_second": 99.548,
|
352 |
+
"eval_steps_per_second": 6.222,
|
353 |
+
"step": 2300
|
354 |
+
},
|
355 |
+
{
|
356 |
+
"epoch": 1.68,
|
357 |
+
"learning_rate": 4.172535211267606e-06,
|
358 |
+
"loss": 0.5124,
|
359 |
+
"step": 2400
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"epoch": 1.68,
|
363 |
+
"eval_accuracy": 0.7490000128746033,
|
364 |
+
"eval_loss": 0.5654177665710449,
|
365 |
+
"eval_runtime": 19.7883,
|
366 |
+
"eval_samples_per_second": 101.07,
|
367 |
+
"eval_steps_per_second": 6.317,
|
368 |
+
"step": 2400
|
369 |
+
},
|
370 |
+
{
|
371 |
+
"epoch": 1.75,
|
372 |
+
"learning_rate": 4.137323943661972e-06,
|
373 |
+
"loss": 0.5096,
|
374 |
+
"step": 2500
|
375 |
+
},
|
376 |
+
{
|
377 |
+
"epoch": 1.75,
|
378 |
+
"eval_accuracy": 0.7515000104904175,
|
379 |
+
"eval_loss": 0.5803455710411072,
|
380 |
+
"eval_runtime": 22.0507,
|
381 |
+
"eval_samples_per_second": 90.7,
|
382 |
+
"eval_steps_per_second": 5.669,
|
383 |
+
"step": 2500
|
384 |
+
},
|
385 |
+
{
|
386 |
+
"epoch": 1.82,
|
387 |
+
"learning_rate": 4.102112676056339e-06,
|
388 |
+
"loss": 0.4885,
|
389 |
+
"step": 2600
|
390 |
+
},
|
391 |
+
{
|
392 |
+
"epoch": 1.82,
|
393 |
+
"eval_accuracy": 0.75,
|
394 |
+
"eval_loss": 0.5889333486557007,
|
395 |
+
"eval_runtime": 21.1933,
|
396 |
+
"eval_samples_per_second": 94.369,
|
397 |
+
"eval_steps_per_second": 5.898,
|
398 |
+
"step": 2600
|
399 |
+
},
|
400 |
+
{
|
401 |
+
"epoch": 1.89,
|
402 |
+
"learning_rate": 4.0669014084507045e-06,
|
403 |
+
"loss": 0.5111,
|
404 |
+
"step": 2700
|
405 |
+
},
|
406 |
+
{
|
407 |
+
"epoch": 1.89,
|
408 |
+
"eval_accuracy": 0.7664999961853027,
|
409 |
+
"eval_loss": 0.5507832169532776,
|
410 |
+
"eval_runtime": 20.2761,
|
411 |
+
"eval_samples_per_second": 98.638,
|
412 |
+
"eval_steps_per_second": 6.165,
|
413 |
+
"step": 2700
|
414 |
+
},
|
415 |
+
{
|
416 |
+
"epoch": 1.96,
|
417 |
+
"learning_rate": 4.031690140845071e-06,
|
418 |
+
"loss": 0.4868,
|
419 |
+
"step": 2800
|
420 |
+
},
|
421 |
+
{
|
422 |
+
"epoch": 1.96,
|
423 |
+
"eval_accuracy": 0.7634999752044678,
|
424 |
+
"eval_loss": 0.5621495842933655,
|
425 |
+
"eval_runtime": 18.2341,
|
426 |
+
"eval_samples_per_second": 109.685,
|
427 |
+
"eval_steps_per_second": 6.855,
|
428 |
+
"step": 2800
|
429 |
+
},
|
430 |
+
{
|
431 |
+
"epoch": 2.04,
|
432 |
+
"learning_rate": 3.996478873239437e-06,
|
433 |
+
"loss": 0.4599,
|
434 |
+
"step": 2900
|
435 |
+
},
|
436 |
+
{
|
437 |
+
"epoch": 2.04,
|
438 |
+
"eval_accuracy": 0.7615000009536743,
|
439 |
+
"eval_loss": 0.5994852185249329,
|
440 |
+
"eval_runtime": 17.787,
|
441 |
+
"eval_samples_per_second": 112.442,
|
442 |
+
"eval_steps_per_second": 7.028,
|
443 |
+
"step": 2900
|
444 |
+
},
|
445 |
+
{
|
446 |
+
"epoch": 2.11,
|
447 |
+
"learning_rate": 3.961267605633803e-06,
|
448 |
+
"loss": 0.4147,
|
449 |
+
"step": 3000
|
450 |
+
},
|
451 |
+
{
|
452 |
+
"epoch": 2.11,
|
453 |
+
"eval_accuracy": 0.753000020980835,
|
454 |
+
"eval_loss": 0.6202083230018616,
|
455 |
+
"eval_runtime": 20.5139,
|
456 |
+
"eval_samples_per_second": 97.495,
|
457 |
+
"eval_steps_per_second": 6.093,
|
458 |
+
"step": 3000
|
459 |
+
},
|
460 |
+
{
|
461 |
+
"epoch": 2.18,
|
462 |
+
"learning_rate": 3.926056338028169e-06,
|
463 |
+
"loss": 0.4233,
|
464 |
+
"step": 3100
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"epoch": 2.18,
|
468 |
+
"eval_accuracy": 0.762499988079071,
|
469 |
+
"eval_loss": 0.5875486135482788,
|
470 |
+
"eval_runtime": 19.4349,
|
471 |
+
"eval_samples_per_second": 102.908,
|
472 |
+
"eval_steps_per_second": 6.432,
|
473 |
+
"step": 3100
|
474 |
+
},
|
475 |
+
{
|
476 |
+
"epoch": 2.25,
|
477 |
+
"learning_rate": 3.890845070422535e-06,
|
478 |
+
"loss": 0.4324,
|
479 |
+
"step": 3200
|
480 |
+
},
|
481 |
+
{
|
482 |
+
"epoch": 2.25,
|
483 |
+
"eval_accuracy": 0.7609999775886536,
|
484 |
+
"eval_loss": 0.5794370174407959,
|
485 |
+
"eval_runtime": 18.3807,
|
486 |
+
"eval_samples_per_second": 108.81,
|
487 |
+
"eval_steps_per_second": 6.801,
|
488 |
+
"step": 3200
|
489 |
+
},
|
490 |
+
{
|
491 |
+
"epoch": 2.32,
|
492 |
+
"learning_rate": 3.855633802816902e-06,
|
493 |
+
"loss": 0.4141,
|
494 |
+
"step": 3300
|
495 |
+
},
|
496 |
+
{
|
497 |
+
"epoch": 2.32,
|
498 |
+
"eval_accuracy": 0.7459999918937683,
|
499 |
+
"eval_loss": 0.5901930928230286,
|
500 |
+
"eval_runtime": 20.1122,
|
501 |
+
"eval_samples_per_second": 99.442,
|
502 |
+
"eval_steps_per_second": 6.215,
|
503 |
+
"step": 3300
|
504 |
+
},
|
505 |
+
{
|
506 |
+
"epoch": 2.39,
|
507 |
+
"learning_rate": 3.820422535211268e-06,
|
508 |
+
"loss": 0.4306,
|
509 |
+
"step": 3400
|
510 |
+
},
|
511 |
+
{
|
512 |
+
"epoch": 2.39,
|
513 |
+
"eval_accuracy": 0.7544999718666077,
|
514 |
+
"eval_loss": 0.6053192019462585,
|
515 |
+
"eval_runtime": 20.0091,
|
516 |
+
"eval_samples_per_second": 99.955,
|
517 |
+
"eval_steps_per_second": 6.247,
|
518 |
+
"step": 3400
|
519 |
+
},
|
520 |
+
{
|
521 |
+
"epoch": 2.46,
|
522 |
+
"learning_rate": 3.785211267605634e-06,
|
523 |
+
"loss": 0.4266,
|
524 |
+
"step": 3500
|
525 |
+
},
|
526 |
+
{
|
527 |
+
"epoch": 2.46,
|
528 |
+
"eval_accuracy": 0.7570000290870667,
|
529 |
+
"eval_loss": 0.5978769659996033,
|
530 |
+
"eval_runtime": 19.8772,
|
531 |
+
"eval_samples_per_second": 100.618,
|
532 |
+
"eval_steps_per_second": 6.289,
|
533 |
+
"step": 3500
|
534 |
+
},
|
535 |
+
{
|
536 |
+
"epoch": 2.53,
|
537 |
+
"learning_rate": 3.7500000000000005e-06,
|
538 |
+
"loss": 0.4227,
|
539 |
+
"step": 3600
|
540 |
+
},
|
541 |
+
{
|
542 |
+
"epoch": 2.53,
|
543 |
+
"eval_accuracy": 0.7649999856948853,
|
544 |
+
"eval_loss": 0.5919951796531677,
|
545 |
+
"eval_runtime": 21.1736,
|
546 |
+
"eval_samples_per_second": 94.457,
|
547 |
+
"eval_steps_per_second": 5.904,
|
548 |
+
"step": 3600
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"epoch": 2.6,
|
552 |
+
"learning_rate": 3.7147887323943665e-06,
|
553 |
+
"loss": 0.4226,
|
554 |
+
"step": 3700
|
555 |
+
},
|
556 |
+
{
|
557 |
+
"epoch": 2.6,
|
558 |
+
"eval_accuracy": 0.7455000281333923,
|
559 |
+
"eval_loss": 0.6165611743927002,
|
560 |
+
"eval_runtime": 20.5872,
|
561 |
+
"eval_samples_per_second": 97.148,
|
562 |
+
"eval_steps_per_second": 6.072,
|
563 |
+
"step": 3700
|
564 |
+
},
|
565 |
+
{
|
566 |
+
"epoch": 2.67,
|
567 |
+
"learning_rate": 3.679577464788733e-06,
|
568 |
+
"loss": 0.3978,
|
569 |
+
"step": 3800
|
570 |
+
},
|
571 |
+
{
|
572 |
+
"epoch": 2.67,
|
573 |
+
"eval_accuracy": 0.7559999823570251,
|
574 |
+
"eval_loss": 0.6125866770744324,
|
575 |
+
"eval_runtime": 22.1514,
|
576 |
+
"eval_samples_per_second": 90.288,
|
577 |
+
"eval_steps_per_second": 5.643,
|
578 |
+
"step": 3800
|
579 |
+
},
|
580 |
+
{
|
581 |
+
"epoch": 2.74,
|
582 |
+
"learning_rate": 3.644366197183099e-06,
|
583 |
+
"loss": 0.3954,
|
584 |
+
"step": 3900
|
585 |
+
},
|
586 |
+
{
|
587 |
+
"epoch": 2.74,
|
588 |
+
"eval_accuracy": 0.7549999952316284,
|
589 |
+
"eval_loss": 0.615158200263977,
|
590 |
+
"eval_runtime": 17.1074,
|
591 |
+
"eval_samples_per_second": 116.908,
|
592 |
+
"eval_steps_per_second": 7.307,
|
593 |
+
"step": 3900
|
594 |
+
},
|
595 |
+
{
|
596 |
+
"epoch": 2.81,
|
597 |
+
"learning_rate": 3.609154929577465e-06,
|
598 |
+
"loss": 0.4209,
|
599 |
+
"step": 4000
|
600 |
+
},
|
601 |
+
{
|
602 |
+
"epoch": 2.81,
|
603 |
+
"eval_accuracy": 0.75,
|
604 |
+
"eval_loss": 0.597953736782074,
|
605 |
+
"eval_runtime": 22.6397,
|
606 |
+
"eval_samples_per_second": 88.34,
|
607 |
+
"eval_steps_per_second": 5.521,
|
608 |
+
"step": 4000
|
609 |
+
},
|
610 |
+
{
|
611 |
+
"epoch": 2.88,
|
612 |
+
"learning_rate": 3.5739436619718315e-06,
|
613 |
+
"loss": 0.3982,
|
614 |
+
"step": 4100
|
615 |
+
},
|
616 |
+
{
|
617 |
+
"epoch": 2.88,
|
618 |
+
"eval_accuracy": 0.7490000128746033,
|
619 |
+
"eval_loss": 0.6096097230911255,
|
620 |
+
"eval_runtime": 22.0097,
|
621 |
+
"eval_samples_per_second": 90.869,
|
622 |
+
"eval_steps_per_second": 5.679,
|
623 |
+
"step": 4100
|
624 |
+
},
|
625 |
+
{
|
626 |
+
"epoch": 2.95,
|
627 |
+
"learning_rate": 3.538732394366197e-06,
|
628 |
+
"loss": 0.4016,
|
629 |
+
"step": 4200
|
630 |
+
},
|
631 |
+
{
|
632 |
+
"epoch": 2.95,
|
633 |
+
"eval_accuracy": 0.7425000071525574,
|
634 |
+
"eval_loss": 0.6540722846984863,
|
635 |
+
"eval_runtime": 16.1358,
|
636 |
+
"eval_samples_per_second": 123.948,
|
637 |
+
"eval_steps_per_second": 7.747,
|
638 |
+
"step": 4200
|
639 |
+
},
|
640 |
+
{
|
641 |
+
"epoch": 3.02,
|
642 |
+
"learning_rate": 3.5035211267605634e-06,
|
643 |
+
"loss": 0.3966,
|
644 |
+
"step": 4300
|
645 |
+
},
|
646 |
+
{
|
647 |
+
"epoch": 3.02,
|
648 |
+
"eval_accuracy": 0.7544999718666077,
|
649 |
+
"eval_loss": 0.6377372145652771,
|
650 |
+
"eval_runtime": 20.4003,
|
651 |
+
"eval_samples_per_second": 98.038,
|
652 |
+
"eval_steps_per_second": 6.127,
|
653 |
+
"step": 4300
|
654 |
+
},
|
655 |
+
{
|
656 |
+
"epoch": 3.09,
|
657 |
+
"learning_rate": 3.4683098591549297e-06,
|
658 |
+
"loss": 0.3074,
|
659 |
+
"step": 4400
|
660 |
+
},
|
661 |
+
{
|
662 |
+
"epoch": 3.09,
|
663 |
+
"eval_accuracy": 0.75,
|
664 |
+
"eval_loss": 0.6859884262084961,
|
665 |
+
"eval_runtime": 20.6366,
|
666 |
+
"eval_samples_per_second": 96.915,
|
667 |
+
"eval_steps_per_second": 6.057,
|
668 |
+
"step": 4400
|
669 |
+
},
|
670 |
+
{
|
671 |
+
"epoch": 3.16,
|
672 |
+
"learning_rate": 3.433098591549296e-06,
|
673 |
+
"loss": 0.3551,
|
674 |
+
"step": 4500
|
675 |
+
},
|
676 |
+
{
|
677 |
+
"epoch": 3.16,
|
678 |
+
"eval_accuracy": 0.7549999952316284,
|
679 |
+
"eval_loss": 0.6160025596618652,
|
680 |
+
"eval_runtime": 21.368,
|
681 |
+
"eval_samples_per_second": 93.598,
|
682 |
+
"eval_steps_per_second": 5.85,
|
683 |
+
"step": 4500
|
684 |
+
},
|
685 |
+
{
|
686 |
+
"epoch": 3.23,
|
687 |
+
"learning_rate": 3.397887323943662e-06,
|
688 |
+
"loss": 0.3323,
|
689 |
+
"step": 4600
|
690 |
+
},
|
691 |
+
{
|
692 |
+
"epoch": 3.23,
|
693 |
+
"eval_accuracy": 0.7519999742507935,
|
694 |
+
"eval_loss": 0.6714155077934265,
|
695 |
+
"eval_runtime": 21.1568,
|
696 |
+
"eval_samples_per_second": 94.532,
|
697 |
+
"eval_steps_per_second": 5.908,
|
698 |
+
"step": 4600
|
699 |
+
},
|
700 |
+
{
|
701 |
+
"epoch": 3.3,
|
702 |
+
"learning_rate": 3.3626760563380284e-06,
|
703 |
+
"loss": 0.3171,
|
704 |
+
"step": 4700
|
705 |
+
},
|
706 |
+
{
|
707 |
+
"epoch": 3.3,
|
708 |
+
"eval_accuracy": 0.7534999847412109,
|
709 |
+
"eval_loss": 0.6537904739379883,
|
710 |
+
"eval_runtime": 17.8954,
|
711 |
+
"eval_samples_per_second": 111.76,
|
712 |
+
"eval_steps_per_second": 6.985,
|
713 |
+
"step": 4700
|
714 |
+
},
|
715 |
+
{
|
716 |
+
"epoch": 3.37,
|
717 |
+
"learning_rate": 3.3274647887323947e-06,
|
718 |
+
"loss": 0.3403,
|
719 |
+
"step": 4800
|
720 |
+
},
|
721 |
+
{
|
722 |
+
"epoch": 3.37,
|
723 |
+
"eval_accuracy": 0.7465000152587891,
|
724 |
+
"eval_loss": 0.677370548248291,
|
725 |
+
"eval_runtime": 22.2854,
|
726 |
+
"eval_samples_per_second": 89.745,
|
727 |
+
"eval_steps_per_second": 5.609,
|
728 |
+
"step": 4800
|
729 |
+
},
|
730 |
+
{
|
731 |
+
"epoch": 3.44,
|
732 |
+
"learning_rate": 3.292253521126761e-06,
|
733 |
+
"loss": 0.3396,
|
734 |
+
"step": 4900
|
735 |
+
},
|
736 |
+
{
|
737 |
+
"epoch": 3.44,
|
738 |
+
"eval_accuracy": 0.7465000152587891,
|
739 |
+
"eval_loss": 0.6725812554359436,
|
740 |
+
"eval_runtime": 20.4072,
|
741 |
+
"eval_samples_per_second": 98.005,
|
742 |
+
"eval_steps_per_second": 6.125,
|
743 |
+
"step": 4900
|
744 |
+
},
|
745 |
+
{
|
746 |
+
"epoch": 3.51,
|
747 |
+
"learning_rate": 3.257042253521127e-06,
|
748 |
+
"loss": 0.3259,
|
749 |
+
"step": 5000
|
750 |
+
},
|
751 |
+
{
|
752 |
+
"epoch": 3.51,
|
753 |
+
"eval_accuracy": 0.7480000257492065,
|
754 |
+
"eval_loss": 0.6465049982070923,
|
755 |
+
"eval_runtime": 16.3957,
|
756 |
+
"eval_samples_per_second": 121.983,
|
757 |
+
"eval_steps_per_second": 7.624,
|
758 |
+
"step": 5000
|
759 |
+
},
|
760 |
+
{
|
761 |
+
"epoch": 3.58,
|
762 |
+
"learning_rate": 3.2218309859154934e-06,
|
763 |
+
"loss": 0.3392,
|
764 |
+
"step": 5100
|
765 |
+
},
|
766 |
+
{
|
767 |
+
"epoch": 3.58,
|
768 |
+
"eval_accuracy": 0.7459999918937683,
|
769 |
+
"eval_loss": 0.6860352754592896,
|
770 |
+
"eval_runtime": 19.1797,
|
771 |
+
"eval_samples_per_second": 104.277,
|
772 |
+
"eval_steps_per_second": 6.517,
|
773 |
+
"step": 5100
|
774 |
+
},
|
775 |
+
{
|
776 |
+
"epoch": 3.65,
|
777 |
+
"learning_rate": 3.1866197183098598e-06,
|
778 |
+
"loss": 0.3251,
|
779 |
+
"step": 5200
|
780 |
+
},
|
781 |
+
{
|
782 |
+
"epoch": 3.65,
|
783 |
+
"eval_accuracy": 0.7494999766349792,
|
784 |
+
"eval_loss": 0.6696720123291016,
|
785 |
+
"eval_runtime": 17.883,
|
786 |
+
"eval_samples_per_second": 111.838,
|
787 |
+
"eval_steps_per_second": 6.99,
|
788 |
+
"step": 5200
|
789 |
+
},
|
790 |
+
{
|
791 |
+
"epoch": 3.72,
|
792 |
+
"learning_rate": 3.1514084507042257e-06,
|
793 |
+
"loss": 0.3253,
|
794 |
+
"step": 5300
|
795 |
+
},
|
796 |
+
{
|
797 |
+
"epoch": 3.72,
|
798 |
+
"eval_accuracy": 0.7429999709129333,
|
799 |
+
"eval_loss": 0.6769505739212036,
|
800 |
+
"eval_runtime": 19.8341,
|
801 |
+
"eval_samples_per_second": 100.836,
|
802 |
+
"eval_steps_per_second": 6.302,
|
803 |
+
"step": 5300
|
804 |
+
},
|
805 |
+
{
|
806 |
+
"epoch": 3.79,
|
807 |
+
"learning_rate": 3.1161971830985916e-06,
|
808 |
+
"loss": 0.3455,
|
809 |
+
"step": 5400
|
810 |
+
},
|
811 |
+
{
|
812 |
+
"epoch": 3.79,
|
813 |
+
"eval_accuracy": 0.7360000014305115,
|
814 |
+
"eval_loss": 0.7176979780197144,
|
815 |
+
"eval_runtime": 17.9226,
|
816 |
+
"eval_samples_per_second": 111.591,
|
817 |
+
"eval_steps_per_second": 6.974,
|
818 |
+
"step": 5400
|
819 |
+
},
|
820 |
+
{
|
821 |
+
"epoch": 3.86,
|
822 |
+
"learning_rate": 3.0809859154929576e-06,
|
823 |
+
"loss": 0.3323,
|
824 |
+
"step": 5500
|
825 |
+
},
|
826 |
+
{
|
827 |
+
"epoch": 3.86,
|
828 |
+
"eval_accuracy": 0.7400000095367432,
|
829 |
+
"eval_loss": 0.6943067908287048,
|
830 |
+
"eval_runtime": 21.4155,
|
831 |
+
"eval_samples_per_second": 93.39,
|
832 |
+
"eval_steps_per_second": 5.837,
|
833 |
+
"step": 5500
|
834 |
+
},
|
835 |
+
{
|
836 |
+
"epoch": 3.93,
|
837 |
+
"learning_rate": 3.045774647887324e-06,
|
838 |
+
"loss": 0.3335,
|
839 |
+
"step": 5600
|
840 |
+
},
|
841 |
+
{
|
842 |
+
"epoch": 3.93,
|
843 |
+
"eval_accuracy": 0.7555000185966492,
|
844 |
+
"eval_loss": 0.6506811380386353,
|
845 |
+
"eval_runtime": 21.6099,
|
846 |
+
"eval_samples_per_second": 92.55,
|
847 |
+
"eval_steps_per_second": 5.784,
|
848 |
+
"step": 5600
|
849 |
+
},
|
850 |
+
{
|
851 |
+
"epoch": 4.0,
|
852 |
+
"learning_rate": 3.0105633802816903e-06,
|
853 |
+
"loss": 0.3368,
|
854 |
+
"step": 5700
|
855 |
+
},
|
856 |
+
{
|
857 |
+
"epoch": 4.0,
|
858 |
+
"eval_accuracy": 0.7484999895095825,
|
859 |
+
"eval_loss": 0.6580154895782471,
|
860 |
+
"eval_runtime": 21.7515,
|
861 |
+
"eval_samples_per_second": 91.948,
|
862 |
+
"eval_steps_per_second": 5.747,
|
863 |
+
"step": 5700
|
864 |
+
},
|
865 |
+
{
|
866 |
+
"epoch": 4.07,
|
867 |
+
"learning_rate": 2.9753521126760567e-06,
|
868 |
+
"loss": 0.2479,
|
869 |
+
"step": 5800
|
870 |
+
},
|
871 |
+
{
|
872 |
+
"epoch": 4.07,
|
873 |
+
"eval_accuracy": 0.7429999709129333,
|
874 |
+
"eval_loss": 0.7666531801223755,
|
875 |
+
"eval_runtime": 15.994,
|
876 |
+
"eval_samples_per_second": 125.047,
|
877 |
+
"eval_steps_per_second": 7.815,
|
878 |
+
"step": 5800
|
879 |
+
},
|
880 |
+
{
|
881 |
+
"epoch": 4.14,
|
882 |
+
"learning_rate": 2.9401408450704226e-06,
|
883 |
+
"loss": 0.2613,
|
884 |
+
"step": 5900
|
885 |
+
},
|
886 |
+
{
|
887 |
+
"epoch": 4.14,
|
888 |
+
"eval_accuracy": 0.7505000233650208,
|
889 |
+
"eval_loss": 0.751265823841095,
|
890 |
+
"eval_runtime": 16.5258,
|
891 |
+
"eval_samples_per_second": 121.023,
|
892 |
+
"eval_steps_per_second": 7.564,
|
893 |
+
"step": 5900
|
894 |
+
},
|
895 |
+
{
|
896 |
+
"epoch": 4.21,
|
897 |
+
"learning_rate": 2.904929577464789e-06,
|
898 |
+
"loss": 0.2557,
|
899 |
+
"step": 6000
|
900 |
+
},
|
901 |
+
{
|
902 |
+
"epoch": 4.21,
|
903 |
+
"eval_accuracy": 0.7484999895095825,
|
904 |
+
"eval_loss": 0.7926999926567078,
|
905 |
+
"eval_runtime": 20.2799,
|
906 |
+
"eval_samples_per_second": 98.62,
|
907 |
+
"eval_steps_per_second": 6.164,
|
908 |
+
"step": 6000
|
909 |
+
},
|
910 |
+
{
|
911 |
+
"epoch": 4.28,
|
912 |
+
"learning_rate": 2.8697183098591553e-06,
|
913 |
+
"loss": 0.243,
|
914 |
+
"step": 6100
|
915 |
+
},
|
916 |
+
{
|
917 |
+
"epoch": 4.28,
|
918 |
+
"eval_accuracy": 0.7450000047683716,
|
919 |
+
"eval_loss": 0.77916020154953,
|
920 |
+
"eval_runtime": 19.6554,
|
921 |
+
"eval_samples_per_second": 101.753,
|
922 |
+
"eval_steps_per_second": 6.36,
|
923 |
+
"step": 6100
|
924 |
+
},
|
925 |
+
{
|
926 |
+
"epoch": 4.35,
|
927 |
+
"learning_rate": 2.8345070422535217e-06,
|
928 |
+
"loss": 0.2473,
|
929 |
+
"step": 6200
|
930 |
+
},
|
931 |
+
{
|
932 |
+
"epoch": 4.35,
|
933 |
+
"eval_accuracy": 0.7354999780654907,
|
934 |
+
"eval_loss": 0.8106710314750671,
|
935 |
+
"eval_runtime": 14.7909,
|
936 |
+
"eval_samples_per_second": 135.218,
|
937 |
+
"eval_steps_per_second": 8.451,
|
938 |
+
"step": 6200
|
939 |
+
},
|
940 |
+
{
|
941 |
+
"epoch": 4.42,
|
942 |
+
"learning_rate": 2.7992957746478876e-06,
|
943 |
+
"loss": 0.2447,
|
944 |
+
"step": 6300
|
945 |
+
},
|
946 |
+
{
|
947 |
+
"epoch": 4.42,
|
948 |
+
"eval_accuracy": 0.7369999885559082,
|
949 |
+
"eval_loss": 0.7850819230079651,
|
950 |
+
"eval_runtime": 15.145,
|
951 |
+
"eval_samples_per_second": 132.057,
|
952 |
+
"eval_steps_per_second": 8.254,
|
953 |
+
"step": 6300
|
954 |
+
},
|
955 |
+
{
|
956 |
+
"epoch": 4.49,
|
957 |
+
"learning_rate": 2.764084507042254e-06,
|
958 |
+
"loss": 0.2515,
|
959 |
+
"step": 6400
|
960 |
+
},
|
961 |
+
{
|
962 |
+
"epoch": 4.49,
|
963 |
+
"eval_accuracy": 0.7465000152587891,
|
964 |
+
"eval_loss": 0.7529160380363464,
|
965 |
+
"eval_runtime": 14.1294,
|
966 |
+
"eval_samples_per_second": 141.549,
|
967 |
+
"eval_steps_per_second": 8.847,
|
968 |
+
"step": 6400
|
969 |
+
},
|
970 |
+
{
|
971 |
+
"epoch": 4.56,
|
972 |
+
"learning_rate": 2.7288732394366203e-06,
|
973 |
+
"loss": 0.274,
|
974 |
+
"step": 6500
|
975 |
+
},
|
976 |
+
{
|
977 |
+
"epoch": 4.56,
|
978 |
+
"eval_accuracy": 0.7465000152587891,
|
979 |
+
"eval_loss": 0.7389978170394897,
|
980 |
+
"eval_runtime": 18.3936,
|
981 |
+
"eval_samples_per_second": 108.733,
|
982 |
+
"eval_steps_per_second": 6.796,
|
983 |
+
"step": 6500
|
984 |
+
},
|
985 |
+
{
|
986 |
+
"epoch": 4.63,
|
987 |
+
"learning_rate": 2.693661971830986e-06,
|
988 |
+
"loss": 0.2674,
|
989 |
+
"step": 6600
|
990 |
+
},
|
991 |
+
{
|
992 |
+
"epoch": 4.63,
|
993 |
+
"eval_accuracy": 0.7459999918937683,
|
994 |
+
"eval_loss": 0.7657651305198669,
|
995 |
+
"eval_runtime": 19.2395,
|
996 |
+
"eval_samples_per_second": 103.953,
|
997 |
+
"eval_steps_per_second": 6.497,
|
998 |
+
"step": 6600
|
999 |
+
},
|
1000 |
+
{
|
1001 |
+
"epoch": 4.7,
|
1002 |
+
"learning_rate": 2.6584507042253522e-06,
|
1003 |
+
"loss": 0.2416,
|
1004 |
+
"step": 6700
|
1005 |
+
},
|
1006 |
+
{
|
1007 |
+
"epoch": 4.7,
|
1008 |
+
"eval_accuracy": 0.7484999895095825,
|
1009 |
+
"eval_loss": 0.7914510369300842,
|
1010 |
+
"eval_runtime": 17.7833,
|
1011 |
+
"eval_samples_per_second": 112.465,
|
1012 |
+
"eval_steps_per_second": 7.029,
|
1013 |
+
"step": 6700
|
1014 |
+
},
|
1015 |
+
{
|
1016 |
+
"epoch": 4.77,
|
1017 |
+
"learning_rate": 2.623239436619718e-06,
|
1018 |
+
"loss": 0.2432,
|
1019 |
+
"step": 6800
|
1020 |
+
},
|
1021 |
+
{
|
1022 |
+
"epoch": 4.77,
|
1023 |
+
"eval_accuracy": 0.7434999942779541,
|
1024 |
+
"eval_loss": 0.7988595962524414,
|
1025 |
+
"eval_runtime": 16.8516,
|
1026 |
+
"eval_samples_per_second": 118.683,
|
1027 |
+
"eval_steps_per_second": 7.418,
|
1028 |
+
"step": 6800
|
1029 |
+
},
|
1030 |
+
{
|
1031 |
+
"epoch": 4.84,
|
1032 |
+
"learning_rate": 2.5880281690140845e-06,
|
1033 |
+
"loss": 0.2595,
|
1034 |
+
"step": 6900
|
1035 |
+
},
|
1036 |
+
{
|
1037 |
+
"epoch": 4.84,
|
1038 |
+
"eval_accuracy": 0.7379999756813049,
|
1039 |
+
"eval_loss": 0.7850367426872253,
|
1040 |
+
"eval_runtime": 22.0351,
|
1041 |
+
"eval_samples_per_second": 90.764,
|
1042 |
+
"eval_steps_per_second": 5.673,
|
1043 |
+
"step": 6900
|
1044 |
+
},
|
1045 |
+
{
|
1046 |
+
"epoch": 4.91,
|
1047 |
+
"learning_rate": 2.552816901408451e-06,
|
1048 |
+
"loss": 0.2736,
|
1049 |
+
"step": 7000
|
1050 |
+
},
|
1051 |
+
{
|
1052 |
+
"epoch": 4.91,
|
1053 |
+
"eval_accuracy": 0.7394999861717224,
|
1054 |
+
"eval_loss": 0.7577053308486938,
|
1055 |
+
"eval_runtime": 22.4529,
|
1056 |
+
"eval_samples_per_second": 89.075,
|
1057 |
+
"eval_steps_per_second": 5.567,
|
1058 |
+
"step": 7000
|
1059 |
+
},
|
1060 |
+
{
|
1061 |
+
"epoch": 4.98,
|
1062 |
+
"learning_rate": 2.5176056338028172e-06,
|
1063 |
+
"loss": 0.2783,
|
1064 |
+
"step": 7100
|
1065 |
+
},
|
1066 |
+
{
|
1067 |
+
"epoch": 4.98,
|
1068 |
+
"eval_accuracy": 0.7404999732971191,
|
1069 |
+
"eval_loss": 0.7649760842323303,
|
1070 |
+
"eval_runtime": 18.1063,
|
1071 |
+
"eval_samples_per_second": 110.459,
|
1072 |
+
"eval_steps_per_second": 6.904,
|
1073 |
+
"step": 7100
|
1074 |
+
},
|
1075 |
+
{
|
1076 |
+
"epoch": 5.05,
|
1077 |
+
"learning_rate": 2.482394366197183e-06,
|
1078 |
+
"loss": 0.2304,
|
1079 |
+
"step": 7200
|
1080 |
+
},
|
1081 |
+
{
|
1082 |
+
"epoch": 5.05,
|
1083 |
+
"eval_accuracy": 0.7384999990463257,
|
1084 |
+
"eval_loss": 0.8541684746742249,
|
1085 |
+
"eval_runtime": 20.2711,
|
1086 |
+
"eval_samples_per_second": 98.663,
|
1087 |
+
"eval_steps_per_second": 6.166,
|
1088 |
+
"step": 7200
|
1089 |
+
},
|
1090 |
+
{
|
1091 |
+
"epoch": 5.12,
|
1092 |
+
"learning_rate": 2.4471830985915495e-06,
|
1093 |
+
"loss": 0.1937,
|
1094 |
+
"step": 7300
|
1095 |
+
},
|
1096 |
+
{
|
1097 |
+
"epoch": 5.12,
|
1098 |
+
"eval_accuracy": 0.734499990940094,
|
1099 |
+
"eval_loss": 0.8389941453933716,
|
1100 |
+
"eval_runtime": 21.6926,
|
1101 |
+
"eval_samples_per_second": 92.197,
|
1102 |
+
"eval_steps_per_second": 5.762,
|
1103 |
+
"step": 7300
|
1104 |
+
},
|
1105 |
+
{
|
1106 |
+
"epoch": 5.19,
|
1107 |
+
"learning_rate": 2.411971830985916e-06,
|
1108 |
+
"loss": 0.1878,
|
1109 |
+
"step": 7400
|
1110 |
+
},
|
1111 |
+
{
|
1112 |
+
"epoch": 5.19,
|
1113 |
+
"eval_accuracy": 0.7329999804496765,
|
1114 |
+
"eval_loss": 0.9149684906005859,
|
1115 |
+
"eval_runtime": 19.4205,
|
1116 |
+
"eval_samples_per_second": 102.984,
|
1117 |
+
"eval_steps_per_second": 6.436,
|
1118 |
+
"step": 7400
|
1119 |
+
},
|
1120 |
+
{
|
1121 |
+
"epoch": 5.26,
|
1122 |
+
"learning_rate": 2.376760563380282e-06,
|
1123 |
+
"loss": 0.1921,
|
1124 |
+
"step": 7500
|
1125 |
+
},
|
1126 |
+
{
|
1127 |
+
"epoch": 5.26,
|
1128 |
+
"eval_accuracy": 0.7404999732971191,
|
1129 |
+
"eval_loss": 0.8792451024055481,
|
1130 |
+
"eval_runtime": 20.264,
|
1131 |
+
"eval_samples_per_second": 98.697,
|
1132 |
+
"eval_steps_per_second": 6.169,
|
1133 |
+
"step": 7500
|
1134 |
+
},
|
1135 |
+
{
|
1136 |
+
"epoch": 5.33,
|
1137 |
+
"learning_rate": 2.341549295774648e-06,
|
1138 |
+
"loss": 0.1916,
|
1139 |
+
"step": 7600
|
1140 |
+
},
|
1141 |
+
{
|
1142 |
+
"epoch": 5.33,
|
1143 |
+
"eval_accuracy": 0.7409999966621399,
|
1144 |
+
"eval_loss": 0.8891890645027161,
|
1145 |
+
"eval_runtime": 20.8102,
|
1146 |
+
"eval_samples_per_second": 96.107,
|
1147 |
+
"eval_steps_per_second": 6.007,
|
1148 |
+
"step": 7600
|
1149 |
+
},
|
1150 |
+
{
|
1151 |
+
"epoch": 5.4,
|
1152 |
+
"learning_rate": 2.306338028169014e-06,
|
1153 |
+
"loss": 0.2011,
|
1154 |
+
"step": 7700
|
1155 |
+
},
|
1156 |
+
{
|
1157 |
+
"epoch": 5.4,
|
1158 |
+
"eval_accuracy": 0.7325000166893005,
|
1159 |
+
"eval_loss": 0.9012252688407898,
|
1160 |
+
"eval_runtime": 21.4132,
|
1161 |
+
"eval_samples_per_second": 93.4,
|
1162 |
+
"eval_steps_per_second": 5.838,
|
1163 |
+
"step": 7700
|
1164 |
+
},
|
1165 |
+
{
|
1166 |
+
"epoch": 5.47,
|
1167 |
+
"learning_rate": 2.2711267605633805e-06,
|
1168 |
+
"loss": 0.211,
|
1169 |
+
"step": 7800
|
1170 |
+
},
|
1171 |
+
{
|
1172 |
+
"epoch": 5.47,
|
1173 |
+
"eval_accuracy": 0.7419999837875366,
|
1174 |
+
"eval_loss": 0.8607960343360901,
|
1175 |
+
"eval_runtime": 17.8954,
|
1176 |
+
"eval_samples_per_second": 111.761,
|
1177 |
+
"eval_steps_per_second": 6.985,
|
1178 |
+
"step": 7800
|
1179 |
+
},
|
1180 |
+
{
|
1181 |
+
"epoch": 5.54,
|
1182 |
+
"learning_rate": 2.235915492957747e-06,
|
1183 |
+
"loss": 0.2194,
|
1184 |
+
"step": 7900
|
1185 |
+
},
|
1186 |
+
{
|
1187 |
+
"epoch": 5.54,
|
1188 |
+
"eval_accuracy": 0.7319999933242798,
|
1189 |
+
"eval_loss": 0.8851566314697266,
|
1190 |
+
"eval_runtime": 12.4785,
|
1191 |
+
"eval_samples_per_second": 160.275,
|
1192 |
+
"eval_steps_per_second": 10.017,
|
1193 |
+
"step": 7900
|
1194 |
+
},
|
1195 |
+
{
|
1196 |
+
"epoch": 5.61,
|
1197 |
+
"learning_rate": 2.200704225352113e-06,
|
1198 |
+
"loss": 0.205,
|
1199 |
+
"step": 8000
|
1200 |
+
},
|
1201 |
+
{
|
1202 |
+
"epoch": 5.61,
|
1203 |
+
"eval_accuracy": 0.7384999990463257,
|
1204 |
+
"eval_loss": 0.8803377151489258,
|
1205 |
+
"eval_runtime": 17.7919,
|
1206 |
+
"eval_samples_per_second": 112.41,
|
1207 |
+
"eval_steps_per_second": 7.026,
|
1208 |
+
"step": 8000
|
1209 |
+
},
|
1210 |
+
{
|
1211 |
+
"epoch": 5.68,
|
1212 |
+
"learning_rate": 2.1654929577464787e-06,
|
1213 |
+
"loss": 0.1981,
|
1214 |
+
"step": 8100
|
1215 |
+
},
|
1216 |
+
{
|
1217 |
+
"epoch": 5.68,
|
1218 |
+
"eval_accuracy": 0.7329999804496765,
|
1219 |
+
"eval_loss": 0.86810302734375,
|
1220 |
+
"eval_runtime": 15.0816,
|
1221 |
+
"eval_samples_per_second": 132.612,
|
1222 |
+
"eval_steps_per_second": 8.288,
|
1223 |
+
"step": 8100
|
1224 |
+
},
|
1225 |
+
{
|
1226 |
+
"epoch": 5.75,
|
1227 |
+
"learning_rate": 2.130281690140845e-06,
|
1228 |
+
"loss": 0.1908,
|
1229 |
+
"step": 8200
|
1230 |
+
},
|
1231 |
+
{
|
1232 |
+
"epoch": 5.75,
|
1233 |
+
"eval_accuracy": 0.7434999942779541,
|
1234 |
+
"eval_loss": 0.9019960761070251,
|
1235 |
+
"eval_runtime": 16.0702,
|
1236 |
+
"eval_samples_per_second": 124.454,
|
1237 |
+
"eval_steps_per_second": 7.778,
|
1238 |
+
"step": 8200
|
1239 |
+
},
|
1240 |
+
{
|
1241 |
+
"epoch": 5.82,
|
1242 |
+
"learning_rate": 2.0950704225352115e-06,
|
1243 |
+
"loss": 0.1942,
|
1244 |
+
"step": 8300
|
1245 |
+
},
|
1246 |
+
{
|
1247 |
+
"epoch": 5.82,
|
1248 |
+
"eval_accuracy": 0.7409999966621399,
|
1249 |
+
"eval_loss": 0.8780096173286438,
|
1250 |
+
"eval_runtime": 18.9162,
|
1251 |
+
"eval_samples_per_second": 105.73,
|
1252 |
+
"eval_steps_per_second": 6.608,
|
1253 |
+
"step": 8300
|
1254 |
+
},
|
1255 |
+
{
|
1256 |
+
"epoch": 5.89,
|
1257 |
+
"learning_rate": 2.059859154929578e-06,
|
1258 |
+
"loss": 0.1958,
|
1259 |
+
"step": 8400
|
1260 |
+
},
|
1261 |
+
{
|
1262 |
+
"epoch": 5.89,
|
1263 |
+
"eval_accuracy": 0.734499990940094,
|
1264 |
+
"eval_loss": 0.8936640620231628,
|
1265 |
+
"eval_runtime": 19.3712,
|
1266 |
+
"eval_samples_per_second": 103.246,
|
1267 |
+
"eval_steps_per_second": 6.453,
|
1268 |
+
"step": 8400
|
1269 |
+
},
|
1270 |
+
{
|
1271 |
+
"epoch": 5.96,
|
1272 |
+
"learning_rate": 2.0246478873239438e-06,
|
1273 |
+
"loss": 0.1883,
|
1274 |
+
"step": 8500
|
1275 |
+
},
|
1276 |
+
{
|
1277 |
+
"epoch": 5.96,
|
1278 |
+
"eval_accuracy": 0.7360000014305115,
|
1279 |
+
"eval_loss": 0.9120668172836304,
|
1280 |
+
"eval_runtime": 17.1206,
|
1281 |
+
"eval_samples_per_second": 116.818,
|
1282 |
+
"eval_steps_per_second": 7.301,
|
1283 |
+
"step": 8500
|
1284 |
+
},
|
1285 |
+
{
|
1286 |
+
"epoch": 6.04,
|
1287 |
+
"learning_rate": 1.98943661971831e-06,
|
1288 |
+
"loss": 0.1819,
|
1289 |
+
"step": 8600
|
1290 |
+
},
|
1291 |
+
{
|
1292 |
+
"epoch": 6.04,
|
1293 |
+
"eval_accuracy": 0.7429999709129333,
|
1294 |
+
"eval_loss": 0.94089674949646,
|
1295 |
+
"eval_runtime": 22.6258,
|
1296 |
+
"eval_samples_per_second": 88.395,
|
1297 |
+
"eval_steps_per_second": 5.525,
|
1298 |
+
"step": 8600
|
1299 |
+
},
|
1300 |
+
{
|
1301 |
+
"epoch": 6.11,
|
1302 |
+
"learning_rate": 1.954225352112676e-06,
|
1303 |
+
"loss": 0.145,
|
1304 |
+
"step": 8700
|
1305 |
+
},
|
1306 |
+
{
|
1307 |
+
"epoch": 6.11,
|
1308 |
+
"eval_accuracy": 0.7264999747276306,
|
1309 |
+
"eval_loss": 1.1389663219451904,
|
1310 |
+
"eval_runtime": 15.9579,
|
1311 |
+
"eval_samples_per_second": 125.33,
|
1312 |
+
"eval_steps_per_second": 7.833,
|
1313 |
+
"step": 8700
|
1314 |
+
},
|
1315 |
+
{
|
1316 |
+
"epoch": 6.18,
|
1317 |
+
"learning_rate": 1.9190140845070424e-06,
|
1318 |
+
"loss": 0.1696,
|
1319 |
+
"step": 8800
|
1320 |
+
},
|
1321 |
+
{
|
1322 |
+
"epoch": 6.18,
|
1323 |
+
"eval_accuracy": 0.7429999709129333,
|
1324 |
+
"eval_loss": 0.9188500046730042,
|
1325 |
+
"eval_runtime": 21.2758,
|
1326 |
+
"eval_samples_per_second": 94.003,
|
1327 |
+
"eval_steps_per_second": 5.875,
|
1328 |
+
"step": 8800
|
1329 |
+
},
|
1330 |
+
{
|
1331 |
+
"epoch": 6.25,
|
1332 |
+
"learning_rate": 1.8838028169014086e-06,
|
1333 |
+
"loss": 0.1488,
|
1334 |
+
"step": 8900
|
1335 |
+
},
|
1336 |
+
{
|
1337 |
+
"epoch": 6.25,
|
1338 |
+
"eval_accuracy": 0.7400000095367432,
|
1339 |
+
"eval_loss": 0.9717501401901245,
|
1340 |
+
"eval_runtime": 17.3967,
|
1341 |
+
"eval_samples_per_second": 114.964,
|
1342 |
+
"eval_steps_per_second": 7.185,
|
1343 |
+
"step": 8900
|
1344 |
+
},
|
1345 |
+
{
|
1346 |
+
"epoch": 6.32,
|
1347 |
+
"learning_rate": 1.848591549295775e-06,
|
1348 |
+
"loss": 0.1637,
|
1349 |
+
"step": 9000
|
1350 |
+
},
|
1351 |
+
{
|
1352 |
+
"epoch": 6.32,
|
1353 |
+
"eval_accuracy": 0.7450000047683716,
|
1354 |
+
"eval_loss": 0.9701842069625854,
|
1355 |
+
"eval_runtime": 19.9143,
|
1356 |
+
"eval_samples_per_second": 100.43,
|
1357 |
+
"eval_steps_per_second": 6.277,
|
1358 |
+
"step": 9000
|
1359 |
+
},
|
1360 |
+
{
|
1361 |
+
"epoch": 6.39,
|
1362 |
+
"learning_rate": 1.813380281690141e-06,
|
1363 |
+
"loss": 0.1547,
|
1364 |
+
"step": 9100
|
1365 |
+
},
|
1366 |
+
{
|
1367 |
+
"epoch": 6.39,
|
1368 |
+
"eval_accuracy": 0.7409999966621399,
|
1369 |
+
"eval_loss": 1.0032541751861572,
|
1370 |
+
"eval_runtime": 21.7985,
|
1371 |
+
"eval_samples_per_second": 91.749,
|
1372 |
+
"eval_steps_per_second": 5.734,
|
1373 |
+
"step": 9100
|
1374 |
+
},
|
1375 |
+
{
|
1376 |
+
"epoch": 6.46,
|
1377 |
+
"learning_rate": 1.7781690140845072e-06,
|
1378 |
+
"loss": 0.1605,
|
1379 |
+
"step": 9200
|
1380 |
+
},
|
1381 |
+
{
|
1382 |
+
"epoch": 6.46,
|
1383 |
+
"eval_accuracy": 0.7354999780654907,
|
1384 |
+
"eval_loss": 0.99726402759552,
|
1385 |
+
"eval_runtime": 21.688,
|
1386 |
+
"eval_samples_per_second": 92.217,
|
1387 |
+
"eval_steps_per_second": 5.764,
|
1388 |
+
"step": 9200
|
1389 |
+
},
|
1390 |
+
{
|
1391 |
+
"epoch": 6.53,
|
1392 |
+
"learning_rate": 1.7429577464788734e-06,
|
1393 |
+
"loss": 0.1552,
|
1394 |
+
"step": 9300
|
1395 |
+
},
|
1396 |
+
{
|
1397 |
+
"epoch": 6.53,
|
1398 |
+
"eval_accuracy": 0.7289999723434448,
|
1399 |
+
"eval_loss": 1.0491423606872559,
|
1400 |
+
"eval_runtime": 20.7168,
|
1401 |
+
"eval_samples_per_second": 96.54,
|
1402 |
+
"eval_steps_per_second": 6.034,
|
1403 |
+
"step": 9300
|
1404 |
+
},
|
1405 |
+
{
|
1406 |
+
"epoch": 6.6,
|
1407 |
+
"learning_rate": 1.7077464788732395e-06,
|
1408 |
+
"loss": 0.1731,
|
1409 |
+
"step": 9400
|
1410 |
+
},
|
1411 |
+
{
|
1412 |
+
"epoch": 6.6,
|
1413 |
+
"eval_accuracy": 0.7335000038146973,
|
1414 |
+
"eval_loss": 1.027091145515442,
|
1415 |
+
"eval_runtime": 21.2758,
|
1416 |
+
"eval_samples_per_second": 94.003,
|
1417 |
+
"eval_steps_per_second": 5.875,
|
1418 |
+
"step": 9400
|
1419 |
+
},
|
1420 |
+
{
|
1421 |
+
"epoch": 6.67,
|
1422 |
+
"learning_rate": 1.6725352112676057e-06,
|
1423 |
+
"loss": 0.1738,
|
1424 |
+
"step": 9500
|
1425 |
+
},
|
1426 |
+
{
|
1427 |
+
"epoch": 6.67,
|
1428 |
+
"eval_accuracy": 0.7429999709129333,
|
1429 |
+
"eval_loss": 0.9575192928314209,
|
1430 |
+
"eval_runtime": 18.6703,
|
1431 |
+
"eval_samples_per_second": 107.122,
|
1432 |
+
"eval_steps_per_second": 6.695,
|
1433 |
+
"step": 9500
|
1434 |
+
},
|
1435 |
+
{
|
1436 |
+
"epoch": 6.74,
|
1437 |
+
"learning_rate": 1.637323943661972e-06,
|
1438 |
+
"loss": 0.1669,
|
1439 |
+
"step": 9600
|
1440 |
+
},
|
1441 |
+
{
|
1442 |
+
"epoch": 6.74,
|
1443 |
+
"eval_accuracy": 0.7350000143051147,
|
1444 |
+
"eval_loss": 0.9613668322563171,
|
1445 |
+
"eval_runtime": 21.3968,
|
1446 |
+
"eval_samples_per_second": 93.472,
|
1447 |
+
"eval_steps_per_second": 5.842,
|
1448 |
+
"step": 9600
|
1449 |
+
},
|
1450 |
+
{
|
1451 |
+
"epoch": 6.81,
|
1452 |
+
"learning_rate": 1.6021126760563382e-06,
|
1453 |
+
"loss": 0.1347,
|
1454 |
+
"step": 9700
|
1455 |
+
},
|
1456 |
+
{
|
1457 |
+
"epoch": 6.81,
|
1458 |
+
"eval_accuracy": 0.7365000247955322,
|
1459 |
+
"eval_loss": 1.0263434648513794,
|
1460 |
+
"eval_runtime": 19.7329,
|
1461 |
+
"eval_samples_per_second": 101.353,
|
1462 |
+
"eval_steps_per_second": 6.335,
|
1463 |
+
"step": 9700
|
1464 |
+
},
|
1465 |
+
{
|
1466 |
+
"epoch": 6.88,
|
1467 |
+
"learning_rate": 1.5669014084507045e-06,
|
1468 |
+
"loss": 0.1593,
|
1469 |
+
"step": 9800
|
1470 |
+
},
|
1471 |
+
{
|
1472 |
+
"epoch": 6.88,
|
1473 |
+
"eval_accuracy": 0.7360000014305115,
|
1474 |
+
"eval_loss": 1.017268180847168,
|
1475 |
+
"eval_runtime": 16.8592,
|
1476 |
+
"eval_samples_per_second": 118.63,
|
1477 |
+
"eval_steps_per_second": 7.414,
|
1478 |
+
"step": 9800
|
1479 |
+
},
|
1480 |
+
{
|
1481 |
+
"epoch": 6.95,
|
1482 |
+
"learning_rate": 1.5316901408450705e-06,
|
1483 |
+
"loss": 0.1549,
|
1484 |
+
"step": 9900
|
1485 |
+
},
|
1486 |
+
{
|
1487 |
+
"epoch": 6.95,
|
1488 |
+
"eval_accuracy": 0.7350000143051147,
|
1489 |
+
"eval_loss": 1.0397531986236572,
|
1490 |
+
"eval_runtime": 18.6472,
|
1491 |
+
"eval_samples_per_second": 107.255,
|
1492 |
+
"eval_steps_per_second": 6.703,
|
1493 |
+
"step": 9900
|
1494 |
+
},
|
1495 |
+
{
|
1496 |
+
"epoch": 7.02,
|
1497 |
+
"learning_rate": 1.4964788732394366e-06,
|
1498 |
+
"loss": 0.1675,
|
1499 |
+
"step": 10000
|
1500 |
+
},
|
1501 |
+
{
|
1502 |
+
"epoch": 7.02,
|
1503 |
+
"eval_accuracy": 0.7379999756813049,
|
1504 |
+
"eval_loss": 0.9975456595420837,
|
1505 |
+
"eval_runtime": 19.9355,
|
1506 |
+
"eval_samples_per_second": 100.323,
|
1507 |
+
"eval_steps_per_second": 6.27,
|
1508 |
+
"step": 10000
|
1509 |
+
},
|
1510 |
+
{
|
1511 |
+
"epoch": 7.09,
|
1512 |
+
"learning_rate": 1.461267605633803e-06,
|
1513 |
+
"loss": 0.1182,
|
1514 |
+
"step": 10100
|
1515 |
+
},
|
1516 |
+
{
|
1517 |
+
"epoch": 7.09,
|
1518 |
+
"eval_accuracy": 0.7350000143051147,
|
1519 |
+
"eval_loss": 1.105920672416687,
|
1520 |
+
"eval_runtime": 22.1229,
|
1521 |
+
"eval_samples_per_second": 90.404,
|
1522 |
+
"eval_steps_per_second": 5.65,
|
1523 |
+
"step": 10100
|
1524 |
+
},
|
1525 |
+
{
|
1526 |
+
"epoch": 7.16,
|
1527 |
+
"learning_rate": 1.4260563380281691e-06,
|
1528 |
+
"loss": 0.1351,
|
1529 |
+
"step": 10200
|
1530 |
+
},
|
1531 |
+
{
|
1532 |
+
"epoch": 7.16,
|
1533 |
+
"eval_accuracy": 0.7400000095367432,
|
1534 |
+
"eval_loss": 1.093347191810608,
|
1535 |
+
"eval_runtime": 20.9448,
|
1536 |
+
"eval_samples_per_second": 95.489,
|
1537 |
+
"eval_steps_per_second": 5.968,
|
1538 |
+
"step": 10200
|
1539 |
+
},
|
1540 |
+
{
|
1541 |
+
"epoch": 7.23,
|
1542 |
+
"learning_rate": 1.3908450704225355e-06,
|
1543 |
+
"loss": 0.1496,
|
1544 |
+
"step": 10300
|
1545 |
+
},
|
1546 |
+
{
|
1547 |
+
"epoch": 7.23,
|
1548 |
+
"eval_accuracy": 0.7354999780654907,
|
1549 |
+
"eval_loss": 1.0731019973754883,
|
1550 |
+
"eval_runtime": 17.3295,
|
1551 |
+
"eval_samples_per_second": 115.41,
|
1552 |
+
"eval_steps_per_second": 7.213,
|
1553 |
+
"step": 10300
|
1554 |
+
},
|
1555 |
+
{
|
1556 |
+
"epoch": 7.3,
|
1557 |
+
"learning_rate": 1.3556338028169017e-06,
|
1558 |
+
"loss": 0.1197,
|
1559 |
+
"step": 10400
|
1560 |
+
},
|
1561 |
+
{
|
1562 |
+
"epoch": 7.3,
|
1563 |
+
"eval_accuracy": 0.7360000014305115,
|
1564 |
+
"eval_loss": 1.1089140176773071,
|
1565 |
+
"eval_runtime": 19.6723,
|
1566 |
+
"eval_samples_per_second": 101.666,
|
1567 |
+
"eval_steps_per_second": 6.354,
|
1568 |
+
"step": 10400
|
1569 |
+
},
|
1570 |
+
{
|
1571 |
+
"epoch": 7.37,
|
1572 |
+
"learning_rate": 1.3204225352112676e-06,
|
1573 |
+
"loss": 0.1111,
|
1574 |
+
"step": 10500
|
1575 |
+
},
|
1576 |
+
{
|
1577 |
+
"epoch": 7.37,
|
1578 |
+
"eval_accuracy": 0.7404999732971191,
|
1579 |
+
"eval_loss": 1.1381380558013916,
|
1580 |
+
"eval_runtime": 18.6584,
|
1581 |
+
"eval_samples_per_second": 107.191,
|
1582 |
+
"eval_steps_per_second": 6.699,
|
1583 |
+
"step": 10500
|
1584 |
+
},
|
1585 |
+
{
|
1586 |
+
"epoch": 7.44,
|
1587 |
+
"learning_rate": 1.285211267605634e-06,
|
1588 |
+
"loss": 0.1494,
|
1589 |
+
"step": 10600
|
1590 |
+
},
|
1591 |
+
{
|
1592 |
+
"epoch": 7.44,
|
1593 |
+
"eval_accuracy": 0.7425000071525574,
|
1594 |
+
"eval_loss": 1.0251615047454834,
|
1595 |
+
"eval_runtime": 20.1427,
|
1596 |
+
"eval_samples_per_second": 99.292,
|
1597 |
+
"eval_steps_per_second": 6.206,
|
1598 |
+
"step": 10600
|
1599 |
+
},
|
1600 |
+
{
|
1601 |
+
"epoch": 7.51,
|
1602 |
+
"learning_rate": 1.25e-06,
|
1603 |
+
"loss": 0.1235,
|
1604 |
+
"step": 10700
|
1605 |
+
},
|
1606 |
+
{
|
1607 |
+
"epoch": 7.51,
|
1608 |
+
"eval_accuracy": 0.7360000014305115,
|
1609 |
+
"eval_loss": 1.0906413793563843,
|
1610 |
+
"eval_runtime": 22.5849,
|
1611 |
+
"eval_samples_per_second": 88.555,
|
1612 |
+
"eval_steps_per_second": 5.535,
|
1613 |
+
"step": 10700
|
1614 |
+
},
|
1615 |
+
{
|
1616 |
+
"epoch": 7.58,
|
1617 |
+
"learning_rate": 1.2147887323943663e-06,
|
1618 |
+
"loss": 0.133,
|
1619 |
+
"step": 10800
|
1620 |
+
},
|
1621 |
+
{
|
1622 |
+
"epoch": 7.58,
|
1623 |
+
"eval_accuracy": 0.737500011920929,
|
1624 |
+
"eval_loss": 1.1796296834945679,
|
1625 |
+
"eval_runtime": 12.3686,
|
1626 |
+
"eval_samples_per_second": 161.699,
|
1627 |
+
"eval_steps_per_second": 10.106,
|
1628 |
+
"step": 10800
|
1629 |
+
},
|
1630 |
+
{
|
1631 |
+
"epoch": 7.65,
|
1632 |
+
"learning_rate": 1.1795774647887324e-06,
|
1633 |
+
"loss": 0.1248,
|
1634 |
+
"step": 10900
|
1635 |
+
},
|
1636 |
+
{
|
1637 |
+
"epoch": 7.65,
|
1638 |
+
"eval_accuracy": 0.7419999837875366,
|
1639 |
+
"eval_loss": 1.1331868171691895,
|
1640 |
+
"eval_runtime": 21.2537,
|
1641 |
+
"eval_samples_per_second": 94.101,
|
1642 |
+
"eval_steps_per_second": 5.881,
|
1643 |
+
"step": 10900
|
1644 |
+
},
|
1645 |
+
{
|
1646 |
+
"epoch": 7.72,
|
1647 |
+
"learning_rate": 1.1443661971830988e-06,
|
1648 |
+
"loss": 0.1268,
|
1649 |
+
"step": 11000
|
1650 |
+
},
|
1651 |
+
{
|
1652 |
+
"epoch": 7.72,
|
1653 |
+
"eval_accuracy": 0.7415000200271606,
|
1654 |
+
"eval_loss": 1.1304017305374146,
|
1655 |
+
"eval_runtime": 20.2304,
|
1656 |
+
"eval_samples_per_second": 98.861,
|
1657 |
+
"eval_steps_per_second": 6.179,
|
1658 |
+
"step": 11000
|
1659 |
+
},
|
1660 |
+
{
|
1661 |
+
"epoch": 7.79,
|
1662 |
+
"learning_rate": 1.109154929577465e-06,
|
1663 |
+
"loss": 0.1368,
|
1664 |
+
"step": 11100
|
1665 |
+
},
|
1666 |
+
{
|
1667 |
+
"epoch": 7.79,
|
1668 |
+
"eval_accuracy": 0.7379999756813049,
|
1669 |
+
"eval_loss": 1.1345131397247314,
|
1670 |
+
"eval_runtime": 21.0499,
|
1671 |
+
"eval_samples_per_second": 95.013,
|
1672 |
+
"eval_steps_per_second": 5.938,
|
1673 |
+
"step": 11100
|
1674 |
+
},
|
1675 |
+
{
|
1676 |
+
"epoch": 7.86,
|
1677 |
+
"learning_rate": 1.073943661971831e-06,
|
1678 |
+
"loss": 0.1228,
|
1679 |
+
"step": 11200
|
1680 |
+
},
|
1681 |
+
{
|
1682 |
+
"epoch": 7.86,
|
1683 |
+
"eval_accuracy": 0.7319999933242798,
|
1684 |
+
"eval_loss": 1.2018308639526367,
|
1685 |
+
"eval_runtime": 21.3555,
|
1686 |
+
"eval_samples_per_second": 93.653,
|
1687 |
+
"eval_steps_per_second": 5.853,
|
1688 |
+
"step": 11200
|
1689 |
+
},
|
1690 |
+
{
|
1691 |
+
"epoch": 7.93,
|
1692 |
+
"learning_rate": 1.0387323943661972e-06,
|
1693 |
+
"loss": 0.1281,
|
1694 |
+
"step": 11300
|
1695 |
+
},
|
1696 |
+
{
|
1697 |
+
"epoch": 7.93,
|
1698 |
+
"eval_accuracy": 0.7350000143051147,
|
1699 |
+
"eval_loss": 1.1884474754333496,
|
1700 |
+
"eval_runtime": 18.4277,
|
1701 |
+
"eval_samples_per_second": 108.532,
|
1702 |
+
"eval_steps_per_second": 6.783,
|
1703 |
+
"step": 11300
|
1704 |
+
},
|
1705 |
+
{
|
1706 |
+
"epoch": 8.0,
|
1707 |
+
"learning_rate": 1.0035211267605636e-06,
|
1708 |
+
"loss": 0.1449,
|
1709 |
+
"step": 11400
|
1710 |
+
},
|
1711 |
+
{
|
1712 |
+
"epoch": 8.0,
|
1713 |
+
"eval_accuracy": 0.734499990940094,
|
1714 |
+
"eval_loss": 1.157057762145996,
|
1715 |
+
"eval_runtime": 16.3477,
|
1716 |
+
"eval_samples_per_second": 122.341,
|
1717 |
+
"eval_steps_per_second": 7.646,
|
1718 |
+
"step": 11400
|
1719 |
+
},
|
1720 |
+
{
|
1721 |
+
"epoch": 8.07,
|
1722 |
+
"learning_rate": 9.683098591549295e-07,
|
1723 |
+
"loss": 0.1025,
|
1724 |
+
"step": 11500
|
1725 |
+
},
|
1726 |
+
{
|
1727 |
+
"epoch": 8.07,
|
1728 |
+
"eval_accuracy": 0.734499990940094,
|
1729 |
+
"eval_loss": 1.153812289237976,
|
1730 |
+
"eval_runtime": 15.7861,
|
1731 |
+
"eval_samples_per_second": 126.694,
|
1732 |
+
"eval_steps_per_second": 7.918,
|
1733 |
+
"step": 11500
|
1734 |
+
},
|
1735 |
+
{
|
1736 |
+
"epoch": 8.14,
|
1737 |
+
"learning_rate": 9.330985915492959e-07,
|
1738 |
+
"loss": 0.1199,
|
1739 |
+
"step": 11600
|
1740 |
+
},
|
1741 |
+
{
|
1742 |
+
"epoch": 8.14,
|
1743 |
+
"eval_accuracy": 0.7390000224113464,
|
1744 |
+
"eval_loss": 1.2113364934921265,
|
1745 |
+
"eval_runtime": 16.1478,
|
1746 |
+
"eval_samples_per_second": 123.856,
|
1747 |
+
"eval_steps_per_second": 7.741,
|
1748 |
+
"step": 11600
|
1749 |
+
},
|
1750 |
+
{
|
1751 |
+
"epoch": 8.21,
|
1752 |
+
"learning_rate": 8.978873239436621e-07,
|
1753 |
+
"loss": 0.1016,
|
1754 |
+
"step": 11700
|
1755 |
+
},
|
1756 |
+
{
|
1757 |
+
"epoch": 8.21,
|
1758 |
+
"eval_accuracy": 0.7369999885559082,
|
1759 |
+
"eval_loss": 1.2881745100021362,
|
1760 |
+
"eval_runtime": 23.0414,
|
1761 |
+
"eval_samples_per_second": 86.8,
|
1762 |
+
"eval_steps_per_second": 5.425,
|
1763 |
+
"step": 11700
|
1764 |
+
},
|
1765 |
+
{
|
1766 |
+
"epoch": 8.28,
|
1767 |
+
"learning_rate": 8.626760563380282e-07,
|
1768 |
+
"loss": 0.114,
|
1769 |
+
"step": 11800
|
1770 |
+
},
|
1771 |
+
{
|
1772 |
+
"epoch": 8.28,
|
1773 |
+
"eval_accuracy": 0.7390000224113464,
|
1774 |
+
"eval_loss": 1.287195086479187,
|
1775 |
+
"eval_runtime": 19.2083,
|
1776 |
+
"eval_samples_per_second": 104.122,
|
1777 |
+
"eval_steps_per_second": 6.508,
|
1778 |
+
"step": 11800
|
1779 |
+
},
|
1780 |
+
{
|
1781 |
+
"epoch": 8.35,
|
1782 |
+
"learning_rate": 8.274647887323944e-07,
|
1783 |
+
"loss": 0.1019,
|
1784 |
+
"step": 11900
|
1785 |
+
},
|
1786 |
+
{
|
1787 |
+
"epoch": 8.35,
|
1788 |
+
"eval_accuracy": 0.7379999756813049,
|
1789 |
+
"eval_loss": 1.287625789642334,
|
1790 |
+
"eval_runtime": 19.2034,
|
1791 |
+
"eval_samples_per_second": 104.148,
|
1792 |
+
"eval_steps_per_second": 6.509,
|
1793 |
+
"step": 11900
|
1794 |
+
},
|
1795 |
+
{
|
1796 |
+
"epoch": 8.42,
|
1797 |
+
"learning_rate": 7.922535211267607e-07,
|
1798 |
+
"loss": 0.1142,
|
1799 |
+
"step": 12000
|
1800 |
+
},
|
1801 |
+
{
|
1802 |
+
"epoch": 8.42,
|
1803 |
+
"eval_accuracy": 0.7384999990463257,
|
1804 |
+
"eval_loss": 1.2790753841400146,
|
1805 |
+
"eval_runtime": 12.6779,
|
1806 |
+
"eval_samples_per_second": 157.755,
|
1807 |
+
"eval_steps_per_second": 9.86,
|
1808 |
+
"step": 12000
|
1809 |
+
},
|
1810 |
+
{
|
1811 |
+
"epoch": 8.49,
|
1812 |
+
"learning_rate": 7.570422535211268e-07,
|
1813 |
+
"loss": 0.1135,
|
1814 |
+
"step": 12100
|
1815 |
+
},
|
1816 |
+
{
|
1817 |
+
"epoch": 8.49,
|
1818 |
+
"eval_accuracy": 0.7379999756813049,
|
1819 |
+
"eval_loss": 1.2882863283157349,
|
1820 |
+
"eval_runtime": 22.9048,
|
1821 |
+
"eval_samples_per_second": 87.318,
|
1822 |
+
"eval_steps_per_second": 5.457,
|
1823 |
+
"step": 12100
|
1824 |
+
},
|
1825 |
+
{
|
1826 |
+
"epoch": 8.56,
|
1827 |
+
"learning_rate": 7.21830985915493e-07,
|
1828 |
+
"loss": 0.1139,
|
1829 |
+
"step": 12200
|
1830 |
+
},
|
1831 |
+
{
|
1832 |
+
"epoch": 8.56,
|
1833 |
+
"eval_accuracy": 0.7360000014305115,
|
1834 |
+
"eval_loss": 1.2828530073165894,
|
1835 |
+
"eval_runtime": 12.6066,
|
1836 |
+
"eval_samples_per_second": 158.647,
|
1837 |
+
"eval_steps_per_second": 9.915,
|
1838 |
+
"step": 12200
|
1839 |
+
},
|
1840 |
+
{
|
1841 |
+
"epoch": 8.63,
|
1842 |
+
"learning_rate": 6.866197183098592e-07,
|
1843 |
+
"loss": 0.1107,
|
1844 |
+
"step": 12300
|
1845 |
+
},
|
1846 |
+
{
|
1847 |
+
"epoch": 8.63,
|
1848 |
+
"eval_accuracy": 0.7365000247955322,
|
1849 |
+
"eval_loss": 1.269805669784546,
|
1850 |
+
"eval_runtime": 18.0397,
|
1851 |
+
"eval_samples_per_second": 110.866,
|
1852 |
+
"eval_steps_per_second": 6.929,
|
1853 |
+
"step": 12300
|
1854 |
+
},
|
1855 |
+
{
|
1856 |
+
"epoch": 8.7,
|
1857 |
+
"learning_rate": 6.514084507042254e-07,
|
1858 |
+
"loss": 0.1183,
|
1859 |
+
"step": 12400
|
1860 |
+
},
|
1861 |
+
{
|
1862 |
+
"epoch": 8.7,
|
1863 |
+
"eval_accuracy": 0.734499990940094,
|
1864 |
+
"eval_loss": 1.266024112701416,
|
1865 |
+
"eval_runtime": 18.8559,
|
1866 |
+
"eval_samples_per_second": 106.068,
|
1867 |
+
"eval_steps_per_second": 6.629,
|
1868 |
+
"step": 12400
|
1869 |
+
},
|
1870 |
+
{
|
1871 |
+
"epoch": 8.77,
|
1872 |
+
"learning_rate": 6.161971830985916e-07,
|
1873 |
+
"loss": 0.1064,
|
1874 |
+
"step": 12500
|
1875 |
+
},
|
1876 |
+
{
|
1877 |
+
"epoch": 8.77,
|
1878 |
+
"eval_accuracy": 0.7365000247955322,
|
1879 |
+
"eval_loss": 1.288902759552002,
|
1880 |
+
"eval_runtime": 20.1463,
|
1881 |
+
"eval_samples_per_second": 99.274,
|
1882 |
+
"eval_steps_per_second": 6.205,
|
1883 |
+
"step": 12500
|
1884 |
+
},
|
1885 |
+
{
|
1886 |
+
"epoch": 8.84,
|
1887 |
+
"learning_rate": 5.809859154929578e-07,
|
1888 |
+
"loss": 0.0895,
|
1889 |
+
"step": 12600
|
1890 |
+
},
|
1891 |
+
{
|
1892 |
+
"epoch": 8.84,
|
1893 |
+
"eval_accuracy": 0.7329999804496765,
|
1894 |
+
"eval_loss": 1.3480335474014282,
|
1895 |
+
"eval_runtime": 19.9481,
|
1896 |
+
"eval_samples_per_second": 100.26,
|
1897 |
+
"eval_steps_per_second": 6.266,
|
1898 |
+
"step": 12600
|
1899 |
+
},
|
1900 |
+
{
|
1901 |
+
"epoch": 8.91,
|
1902 |
+
"learning_rate": 5.457746478873239e-07,
|
1903 |
+
"loss": 0.1244,
|
1904 |
+
"step": 12700
|
1905 |
+
},
|
1906 |
+
{
|
1907 |
+
"epoch": 8.91,
|
1908 |
+
"eval_accuracy": 0.7325000166893005,
|
1909 |
+
"eval_loss": 1.2872198820114136,
|
1910 |
+
"eval_runtime": 17.773,
|
1911 |
+
"eval_samples_per_second": 112.53,
|
1912 |
+
"eval_steps_per_second": 7.033,
|
1913 |
+
"step": 12700
|
1914 |
+
},
|
1915 |
+
{
|
1916 |
+
"epoch": 8.98,
|
1917 |
+
"learning_rate": 5.105633802816902e-07,
|
1918 |
+
"loss": 0.1209,
|
1919 |
+
"step": 12800
|
1920 |
+
},
|
1921 |
+
{
|
1922 |
+
"epoch": 8.98,
|
1923 |
+
"eval_accuracy": 0.737500011920929,
|
1924 |
+
"eval_loss": 1.2680846452713013,
|
1925 |
+
"eval_runtime": 22.2614,
|
1926 |
+
"eval_samples_per_second": 89.842,
|
1927 |
+
"eval_steps_per_second": 5.615,
|
1928 |
+
"step": 12800
|
1929 |
+
},
|
1930 |
+
{
|
1931 |
+
"epoch": 9.05,
|
1932 |
+
"learning_rate": 4.7535211267605635e-07,
|
1933 |
+
"loss": 0.1144,
|
1934 |
+
"step": 12900
|
1935 |
+
},
|
1936 |
+
{
|
1937 |
+
"epoch": 9.05,
|
1938 |
+
"eval_accuracy": 0.7369999885559082,
|
1939 |
+
"eval_loss": 1.2711447477340698,
|
1940 |
+
"eval_runtime": 18.1651,
|
1941 |
+
"eval_samples_per_second": 110.101,
|
1942 |
+
"eval_steps_per_second": 6.881,
|
1943 |
+
"step": 12900
|
1944 |
+
},
|
1945 |
+
{
|
1946 |
+
"epoch": 9.12,
|
1947 |
+
"learning_rate": 4.4014084507042255e-07,
|
1948 |
+
"loss": 0.1034,
|
1949 |
+
"step": 13000
|
1950 |
+
},
|
1951 |
+
{
|
1952 |
+
"epoch": 9.12,
|
1953 |
+
"eval_accuracy": 0.7360000014305115,
|
1954 |
+
"eval_loss": 1.2800805568695068,
|
1955 |
+
"eval_runtime": 20.275,
|
1956 |
+
"eval_samples_per_second": 98.644,
|
1957 |
+
"eval_steps_per_second": 6.165,
|
1958 |
+
"step": 13000
|
1959 |
+
},
|
1960 |
+
{
|
1961 |
+
"epoch": 9.19,
|
1962 |
+
"learning_rate": 4.049295774647888e-07,
|
1963 |
+
"loss": 0.113,
|
1964 |
+
"step": 13100
|
1965 |
+
},
|
1966 |
+
{
|
1967 |
+
"epoch": 9.19,
|
1968 |
+
"eval_accuracy": 0.7350000143051147,
|
1969 |
+
"eval_loss": 1.2801427841186523,
|
1970 |
+
"eval_runtime": 19.6919,
|
1971 |
+
"eval_samples_per_second": 101.565,
|
1972 |
+
"eval_steps_per_second": 6.348,
|
1973 |
+
"step": 13100
|
1974 |
+
},
|
1975 |
+
{
|
1976 |
+
"epoch": 9.26,
|
1977 |
+
"learning_rate": 3.6971830985915495e-07,
|
1978 |
+
"loss": 0.0994,
|
1979 |
+
"step": 13200
|
1980 |
+
},
|
1981 |
+
{
|
1982 |
+
"epoch": 9.26,
|
1983 |
+
"eval_accuracy": 0.7360000014305115,
|
1984 |
+
"eval_loss": 1.2920359373092651,
|
1985 |
+
"eval_runtime": 18.5273,
|
1986 |
+
"eval_samples_per_second": 107.949,
|
1987 |
+
"eval_steps_per_second": 6.747,
|
1988 |
+
"step": 13200
|
1989 |
+
},
|
1990 |
+
{
|
1991 |
+
"epoch": 9.33,
|
1992 |
+
"learning_rate": 3.345070422535211e-07,
|
1993 |
+
"loss": 0.0966,
|
1994 |
+
"step": 13300
|
1995 |
+
},
|
1996 |
+
{
|
1997 |
+
"epoch": 9.33,
|
1998 |
+
"eval_accuracy": 0.7335000038146973,
|
1999 |
+
"eval_loss": 1.2760682106018066,
|
2000 |
+
"eval_runtime": 21.2516,
|
2001 |
+
"eval_samples_per_second": 94.11,
|
2002 |
+
"eval_steps_per_second": 5.882,
|
2003 |
+
"step": 13300
|
2004 |
+
},
|
2005 |
+
{
|
2006 |
+
"epoch": 9.4,
|
2007 |
+
"learning_rate": 2.992957746478873e-07,
|
2008 |
+
"loss": 0.0939,
|
2009 |
+
"step": 13400
|
2010 |
+
},
|
2011 |
+
{
|
2012 |
+
"epoch": 9.4,
|
2013 |
+
"eval_accuracy": 0.7365000247955322,
|
2014 |
+
"eval_loss": 1.2908642292022705,
|
2015 |
+
"eval_runtime": 17.0257,
|
2016 |
+
"eval_samples_per_second": 117.47,
|
2017 |
+
"eval_steps_per_second": 7.342,
|
2018 |
+
"step": 13400
|
2019 |
+
},
|
2020 |
+
{
|
2021 |
+
"epoch": 9.47,
|
2022 |
+
"learning_rate": 2.6408450704225356e-07,
|
2023 |
+
"loss": 0.0975,
|
2024 |
+
"step": 13500
|
2025 |
+
},
|
2026 |
+
{
|
2027 |
+
"epoch": 9.47,
|
2028 |
+
"eval_accuracy": 0.7360000014305115,
|
2029 |
+
"eval_loss": 1.2952693700790405,
|
2030 |
+
"eval_runtime": 20.8537,
|
2031 |
+
"eval_samples_per_second": 95.906,
|
2032 |
+
"eval_steps_per_second": 5.994,
|
2033 |
+
"step": 13500
|
2034 |
+
},
|
2035 |
+
{
|
2036 |
+
"epoch": 9.54,
|
2037 |
+
"learning_rate": 2.2887323943661974e-07,
|
2038 |
+
"loss": 0.0842,
|
2039 |
+
"step": 13600
|
2040 |
+
},
|
2041 |
+
{
|
2042 |
+
"epoch": 9.54,
|
2043 |
+
"eval_accuracy": 0.7335000038146973,
|
2044 |
+
"eval_loss": 1.3179150819778442,
|
2045 |
+
"eval_runtime": 20.9509,
|
2046 |
+
"eval_samples_per_second": 95.461,
|
2047 |
+
"eval_steps_per_second": 5.966,
|
2048 |
+
"step": 13600
|
2049 |
+
},
|
2050 |
+
{
|
2051 |
+
"epoch": 9.61,
|
2052 |
+
"learning_rate": 1.936619718309859e-07,
|
2053 |
+
"loss": 0.0871,
|
2054 |
+
"step": 13700
|
2055 |
+
},
|
2056 |
+
{
|
2057 |
+
"epoch": 9.61,
|
2058 |
+
"eval_accuracy": 0.7384999990463257,
|
2059 |
+
"eval_loss": 1.314935564994812,
|
2060 |
+
"eval_runtime": 20.6989,
|
2061 |
+
"eval_samples_per_second": 96.623,
|
2062 |
+
"eval_steps_per_second": 6.039,
|
2063 |
+
"step": 13700
|
2064 |
+
},
|
2065 |
+
{
|
2066 |
+
"epoch": 9.68,
|
2067 |
+
"learning_rate": 1.5845070422535212e-07,
|
2068 |
+
"loss": 0.1162,
|
2069 |
+
"step": 13800
|
2070 |
+
},
|
2071 |
+
{
|
2072 |
+
"epoch": 9.68,
|
2073 |
+
"eval_accuracy": 0.7350000143051147,
|
2074 |
+
"eval_loss": 1.3124284744262695,
|
2075 |
+
"eval_runtime": 21.7736,
|
2076 |
+
"eval_samples_per_second": 91.854,
|
2077 |
+
"eval_steps_per_second": 5.741,
|
2078 |
+
"step": 13800
|
2079 |
+
},
|
2080 |
+
{
|
2081 |
+
"epoch": 9.75,
|
2082 |
+
"learning_rate": 1.2323943661971832e-07,
|
2083 |
+
"loss": 0.085,
|
2084 |
+
"step": 13900
|
2085 |
+
},
|
2086 |
+
{
|
2087 |
+
"epoch": 9.75,
|
2088 |
+
"eval_accuracy": 0.7354999780654907,
|
2089 |
+
"eval_loss": 1.3206626176834106,
|
2090 |
+
"eval_runtime": 18.1587,
|
2091 |
+
"eval_samples_per_second": 110.14,
|
2092 |
+
"eval_steps_per_second": 6.884,
|
2093 |
+
"step": 13900
|
2094 |
+
},
|
2095 |
+
{
|
2096 |
+
"epoch": 9.82,
|
2097 |
+
"learning_rate": 8.802816901408452e-08,
|
2098 |
+
"loss": 0.0966,
|
2099 |
+
"step": 14000
|
2100 |
+
},
|
2101 |
+
{
|
2102 |
+
"epoch": 9.82,
|
2103 |
+
"eval_accuracy": 0.7335000038146973,
|
2104 |
+
"eval_loss": 1.3247543573379517,
|
2105 |
+
"eval_runtime": 16.4512,
|
2106 |
+
"eval_samples_per_second": 121.572,
|
2107 |
+
"eval_steps_per_second": 7.598,
|
2108 |
+
"step": 14000
|
2109 |
+
},
|
2110 |
+
{
|
2111 |
+
"epoch": 9.89,
|
2112 |
+
"learning_rate": 5.281690140845071e-08,
|
2113 |
+
"loss": 0.1064,
|
2114 |
+
"step": 14100
|
2115 |
+
},
|
2116 |
+
{
|
2117 |
+
"epoch": 9.89,
|
2118 |
+
"eval_accuracy": 0.7335000038146973,
|
2119 |
+
"eval_loss": 1.3260987997055054,
|
2120 |
+
"eval_runtime": 22.2976,
|
2121 |
+
"eval_samples_per_second": 89.696,
|
2122 |
+
"eval_steps_per_second": 5.606,
|
2123 |
+
"step": 14100
|
2124 |
+
},
|
2125 |
+
{
|
2126 |
+
"epoch": 9.96,
|
2127 |
+
"learning_rate": 1.7605633802816902e-08,
|
2128 |
+
"loss": 0.1046,
|
2129 |
+
"step": 14200
|
2130 |
+
},
|
2131 |
+
{
|
2132 |
+
"epoch": 9.96,
|
2133 |
+
"eval_accuracy": 0.7360000014305115,
|
2134 |
+
"eval_loss": 1.3255339860916138,
|
2135 |
+
"eval_runtime": 19.2834,
|
2136 |
+
"eval_samples_per_second": 103.716,
|
2137 |
+
"eval_steps_per_second": 6.482,
|
2138 |
+
"step": 14200
|
2139 |
+
},
|
2140 |
+
{
|
2141 |
+
"epoch": 10.0,
|
2142 |
+
"step": 14250,
|
2143 |
+
"total_flos": 2.1254540922139392e+17,
|
2144 |
+
"train_loss": 0.2872312853629129,
|
2145 |
+
"train_runtime": 13159.309,
|
2146 |
+
"train_samples_per_second": 34.664,
|
2147 |
+
"train_steps_per_second": 1.083
|
2148 |
+
}
|
2149 |
+
],
|
2150 |
+
"max_steps": 14250,
|
2151 |
+
"num_train_epochs": 10,
|
2152 |
+
"total_flos": 2.1254540922139392e+17,
|
2153 |
+
"trial_name": null,
|
2154 |
+
"trial_params": null
|
2155 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f96f13160d8ffc1bca4aa21a830360cbd97bda3ce08b241fde8b2efb824992a9
|
3 |
+
size 3375
|