deep-rl / config.json
EmmaRo's picture
first try at LunarLander-v2 with PPO
937bc8b
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7a72001112d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a7200111360>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a72001113f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a7200111480>", "_build": "<function ActorCriticPolicy._build at 0x7a7200111510>", "forward": "<function ActorCriticPolicy.forward at 0x7a72001115a0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a7200111630>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a72001116c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7a7200111750>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a72001117e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a7200111870>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a7200111900>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a720010dc00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690904740117826170, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOYoqT179J+45j9jM0b5MK9y9Yo7vU3CswAAgD8AAAAAmpVHvOz+hLvR/yy8D939Oz/86jxe1+O8AACAPwAAgD8af4M9tuIjPbh0fL2mBFm+MHEgPEbgtj0AAAAAAAAAAGompT5f5mw/dYIVPkENxr6X9mw+jpO6vQAAAAAAAAAAcyKzvUPkJbyPyCO+xQsTvsi4fj2TRN0+AACAPwAAgD9m1sc7yhqzP94hHj9xuQS/Elfnu/9GD74AAAAAAAAAAM3x0DyFmdY6li60vUqSEL4JnLM8UIrcvgAAAAAAAIA/s/7APeFRPj6ARqa+562DvnZXdb3P4b28AAAAAAAAAAAGnAE+F4aZP8nSMz8N+g+/xXEYPeKsFT4AAAAAAAAAAG0AHL43Skw+u3UvPn56hL5Pk9C7MPgwPQAAAAAAAAAAANukvGwEirtVatK8/bsbPfVyjDxq8/Q8AACAPwAAgD9zrSE+wwKAP0RFwT7K5Pe+uk1IPgXeKD0AAAAAAAAAADPOSj320FC6wRybu2XTOzhVXgW7m2m4NgAAgD8AAIA/EvGEvp+aND+nCZo+5AfCvoPgq7xlm2s8AAAAAAAAAAAO+JS+7BKTP4YCkb66JY++IRexvp3JsbwAAAAAAAAAANq2tD3unAQ/laSxPaDjlr5KSzY95UNEvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAQAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHIMPd2xIJ+MAWyUTSkBjAF0lEdAoAEGIfr8i3V9lChoBkdAcQS0Y0l7dGgHTTMBaAhHQKABBCuU2UB1fZQoaAZHQHINpTMqz7doB00rAWgIR0CgAewmE5AAdX2UKGgGR0Bxwb9itq59aAdNKgFoCEdAoAH60x/NJXV9lChoBkdAcSbr433pOmgHTTUBaAhHQKACwn62v0R1fZQoaAZHQHF+0AT7EYRoB00oAWgIR0CgAupjtoi+dX2UKGgGR0BxK/c6/7BPaAdNPgFoCEdAoANUzKs+3nV9lChoBkdAcsjdS2phnmgHTcgBaAhHQKADbGCqZMN1fZQoaAZHQG3b6w2VE/loB00zAWgIR0CgBQwb2lEadX2UKGgGR0BsR2biIcioaAdNSQFoCEdAoAUR+F10T3V9lChoBkdAcO7dSl3yJGgHTZkBaAhHQKAFdFirksB1fZQoaAZHQG5b3bmEGqxoB018AWgIR0CgBcOW0JF9dX2UKGgGR0BvE5JK8L8aaAdNFgFoCEdAoAXGLUCq63V9lChoBkdAbr43Kji4rmgHTSgBaAhHQKAF5B9kSVZ1fZQoaAZHQHLISF49ovloB00SAWgIR0CgBfyro4dZdX2UKGgGR0BxJlR+BpYcaAdNEwFoCEdAoAYDqv/za3V9lChoBkdAcEX114gRsmgHTTUBaAhHQKAGY/t6X0J1fZQoaAZHQHGyGs7uDz1oB0v/aAhHQKAGe8IRh+h1fZQoaAZHQG7YgfMfRu1oB00BAWgIR0CgBoztCzC2dX2UKGgGR0BwsPbblA/taAdNKAFoCEdAoAfpg1FYuHV9lChoBkdAcoUVHWjGk2gHTRYBaAhHQKAIAVD8cdZ1fZQoaAZHQG6kerU9ZA9oB01XAWgIR0CgCJO3MINWdX2UKGgGR0BxbyptJnQIaAdNQAFoCEdAoAjUxj8UEnV9lChoBkdAY6Tq6e5Fw2gHTegDaAhHQKAJoIAOrhl1fZQoaAZHQG+gjC53C9BoB00lAWgIR0CgCe69CeEqdX2UKGgGR0Bv5NWXC0ngaAdNBQFoCEdAoAoBdUsFuHV9lChoBkdAcRMSmIj4YmgHTTMBaAhHQKAKNHnU2DR1fZQoaAZHQG3E06o2n89oB00OAWgIR0CgCkpV81GcdX2UKGgGR0Bxnw/SpiqiaAdNGwFoCEdAoApoJgLJCHV9lChoBkdAcbJiY9gWrWgHTS8BaAhHQKAKe4vN/vx1fZQoaAZHQG8kwKKHfuVoB00QAWgIR0CgCnutOmBOdX2UKGgGR0BxNRI6Kcd6aAdNEQFoCEdAoAp6H6/IsHV9lChoBkdAcYh5I6KceGgHTRkBaAhHQKALQyoGY8d1fZQoaAZHQG/5EjPfKp1oB008AWgIR0CgC9Wd3B55dX2UKGgGR0BwogFUyYXwaAdNVAFoCEdAoAyENx2jf3V9lChoBkdAcn+woLG7z2gHTQ8BaAhHQKAM+RA8jiZ1fZQoaAZHQHFr4qkM1CRoB00QAWgIR0CgDR3T3IuHdX2UKGgGR0Bx98Gjbi6yaAdNUwFoCEdAoA+lcIJJG3V9lChoBkdAbbN0ulGgBmgHTQcBaAhHQKAPtWI42jx1fZQoaAZHQG22nnU2DQJoB00hAWgIR0CgD9/3evZAdX2UKGgGR0BxSCL/CIk7aAdNTAFoCEdAoA/eac7Qs3V9lChoBkdAcBPaqCHymWgHTRwBaAhHQKAQF3os7Mh1fZQoaAZHQG2fRChN/ONoB00EAWgIR0CgECzDn/1hdX2UKGgGR0BuqZx7zCk5aAdNFQFoCEdAoBBjlLeyiXV9lChoBkdAcpLqJMxoI2gHTRoBaAhHQKAQggs9SuR1fZQoaAZHQHJ+hvegte5oB00vAWgIR0CgEJjmr8zidX2UKGgGR0Bvz+rCFbmmaAdNEQFoCEdAoBD7c6/7BXV9lChoBkdAcGsg5imVJWgHTQMBaAhHQKARNJ7LMcJ1fZQoaAZHQHHTI6r/82toB01kAWgIR0CgEXTS1E3LdX2UKGgGR0BxBIRQJokBaAdNhAFoCEdAoBITUd7v5XV9lChoBkdAcFIEQoTfzmgHTSQBaAhHQKAbBxHXmNl1fZQoaAZHQHAh30btJFtoB01TAWgIR0CgG08u8K5TdX2UKGgGR0BwKkOCoS+QaAdNYQFoCEdAoBvvOY6XB3V9lChoBkdAcNnQSSNfgWgHTRcBaAhHQKAcrWsijcp1fZQoaAZHQHA9jNliBoVoB007AWgIR0CgHVTv7WNFdX2UKGgGR0ByHYaUA1ejaAdNQQFoCEdAoB1r/Khcq3V9lChoBkdAcMUIrOJLumgHTTIBaAhHQKAdgWj45951fZQoaAZHQHHD6OPvKEFoB00hAWgIR0CgHY2gOBlMdX2UKGgGR0BtuPHaN+9baAdNRgFoCEdAoB2rFS88LnV9lChoBkdAcrPj4593KWgHTSQBaAhHQKAd1M23rlh1fZQoaAZHQHCeMWfseGRoB000AWgIR0CgHfnim2srdX2UKGgGR0ByEbjjrAxjaAdNTQFoCEdAoB4BlWfbsXV9lChoBkdAcf5ollbu+mgHTSoBaAhHQKAeSAWi1zB1fZQoaAZHQHKGxv3rUspoB002AWgIR0CgHqyn+AEudX2UKGgGR0BxGuoHcDbKaAdNOQFoCEdAoB73ryDqW3V9lChoBkdAcKjfkFOfumgHTScBaAhHQKAfSz67/XJ1fZQoaAZHQHCdjfrKNhpoB00SAWgIR0CgH4f51vETdX2UKGgGR0BwdiT1TR6XaAdNDwFoCEdAoB+4HPeHi3V9lChoBkdAcfa1ZTyau2gHTRIBaAhHQKAgPundfsx1fZQoaAZHQHAlsWCVbA1oB00XAWgIR0CgIZKdYnv2dX2UKGgGR0BwDqb7TDwZaAdNFwFoCEdAoCG6sr/bTXV9lChoBkdAcCdvIwM6R2gHTSIBaAhHQKAh2jkdWAB1fZQoaAZHQHDllk+X7choB000AWgIR0CgIk64tpVTdX2UKGgGR0ByWMWLxZuAaAdNRQFoCEdAoCLA/RmbsnV9lChoBkdAbZ/ky1uzhWgHTUgBaAhHQKAjBr/Khct1fZQoaAZHQG2556MR6GBoB02LAWgIR0CgIy+WOZLJdX2UKGgGR0BvT4cHWz4UaAdNBQFoCEdAoCNBFZxJd3V9lChoBkdAcqctcfNiY2gHS/ZoCEdAoCNlC5VfeHV9lChoBkdAcRk8XvYvnWgHTWYBaAhHQKAju3iJfpl1fZQoaAZHQHMIPOlfqotoB01sAWgIR0CgI8nanJkodX2UKGgGR0BvNKCvovBaaAdNAwFoCEdAoCPfkYGdJHV9lChoBkdAcNpxoqTbFmgHTVcBaAhHQKAkSZSeiBZ1fZQoaAZHQHF+SA6Mir1oB00zAWgIR0CgJSyo4uK5dX2UKGgGR0BwqsHAymALaAdNrQFoCEdAoCWR+x4Y8HV9lChoBkdAbhvjXFtKqWgHTWIBaAhHQKAnE9Pk7wN1fZQoaAZHQGwZ/k/8l5ZoB00pAWgIR0CgJ5D15B1LdX2UKGgGR0BvrfIU8FINaAdNGQFoCEdAoClVMVUMonV9lChoBkdAcatiyIHkcWgHTRQBaAhHQKApkS5iExt1fZQoaAZHQHEVXueBg/loB01pAWgIR0CgKaMQumJndX2UKGgGR0BwcCEUTL4faAdNBQFoCEdAoCoRLuhK2HV9lChoBkdAa7VQwblzVGgHTS0BaAhHQKAqPor4Fid1fZQoaAZHQG6P4ukDZDloB00sAWgIR0CgKrLThHbzdX2UKGgGR0BvzzTMJQchaAdNfwFoCEdAoCqxsj3VTnV9lChoBkdAcRq6E8JUpGgHTWcBaAhHQKArv50KZ2J1fZQoaAZHQG5csKkVN6BoB00mAWgIR0CgK+HZbpu/dX2UKGgGR0ByzpLUTcqOaAdNegFoCEdAoCyyGSIP9XV9lChoBkdAcxTfAKv3amgHTccBaAhHQKAs558jRlZ1fZQoaAZHQGwhHAymALBoB01aAWgIR0CgLTPpQk5ZdX2UKGgGR0BybW/JvHcUaAdNNwJoCEdAoC2yLbYbsHV9lChoBkdAb8vzkIX0oWgHTS0BaAhHQKAt/DSgGr11ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 268, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}