Emperor-WS commited on
Commit
dc9d8ab
1 Parent(s): 732e7ea

Initial commit

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: SAC
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 3578.87 +/- 26.38
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **SAC** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **SAC** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
27
+ and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
28
+
29
+ The RL Zoo is a training framework for Stable Baselines3
30
+ reinforcement learning agents,
31
+ with hyperparameter optimization and pre-trained agents included.
32
+
33
+ ## Usage (with SB3 RL Zoo)
34
+
35
+ RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
36
+ SB3: https://github.com/DLR-RM/stable-baselines3<br/>
37
+ SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
38
+
39
+ Install the RL Zoo (with SB3 and SB3-Contrib):
40
+ ```bash
41
+ pip install rl_zoo3
42
+ ```
43
+
44
+ ```
45
+ # Download model and save it into the logs/ folder
46
+ python -m rl_zoo3.load_from_hub --algo sac --env AntBulletEnv-v0 -orga Emperor-WS -f logs/
47
+ python -m rl_zoo3.enjoy --algo sac --env AntBulletEnv-v0 -f logs/
48
+ ```
49
+
50
+ If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
51
+ ```
52
+ python -m rl_zoo3.load_from_hub --algo sac --env AntBulletEnv-v0 -orga Emperor-WS -f logs/
53
+ python -m rl_zoo3.enjoy --algo sac --env AntBulletEnv-v0 -f logs/
54
+ ```
55
+
56
+ ## Training (with the RL Zoo)
57
+ ```
58
+ python -m rl_zoo3.train --algo sac --env AntBulletEnv-v0 -f logs/
59
+ # Upload the model and generate video (when possible)
60
+ python -m rl_zoo3.push_to_hub --algo sac --env AntBulletEnv-v0 -f logs/ -orga Emperor-WS
61
+ ```
62
+
63
+ ## Hyperparameters
64
+ ```python
65
+ OrderedDict([('batch_size', 256),
66
+ ('buffer_size', 300000),
67
+ ('ent_coef', 'auto'),
68
+ ('gamma', 0.98),
69
+ ('gradient_steps', 8),
70
+ ('learning_rate', 0.00073),
71
+ ('learning_starts', 10000),
72
+ ('n_timesteps', 1000000.0),
73
+ ('policy', 'MlpPolicy'),
74
+ ('policy_kwargs', 'dict(log_std_init=-3, net_arch=[400, 300])'),
75
+ ('tau', 0.02),
76
+ ('train_freq', 8),
77
+ ('use_sde', True),
78
+ ('normalize', False)])
79
+ ```
80
+
81
+ # Environment Arguments
82
+ ```python
83
+ {'render_mode': 'rgb_array'}
84
+ ```
args.yml ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - algo
3
+ - sac
4
+ - - conf_file
5
+ - null
6
+ - - device
7
+ - auto
8
+ - - env
9
+ - AntBulletEnv-v0
10
+ - - env_kwargs
11
+ - null
12
+ - - eval_episodes
13
+ - 5
14
+ - - eval_freq
15
+ - 25000
16
+ - - gym_packages
17
+ - []
18
+ - - hyperparams
19
+ - null
20
+ - - log_folder
21
+ - logs
22
+ - - log_interval
23
+ - -1
24
+ - - max_total_trials
25
+ - null
26
+ - - n_eval_envs
27
+ - 1
28
+ - - n_evaluations
29
+ - null
30
+ - - n_jobs
31
+ - 1
32
+ - - n_startup_trials
33
+ - 10
34
+ - - n_timesteps
35
+ - -1
36
+ - - n_trials
37
+ - 500
38
+ - - no_optim_plots
39
+ - false
40
+ - - num_threads
41
+ - -1
42
+ - - optimization_log_path
43
+ - null
44
+ - - optimize_hyperparameters
45
+ - false
46
+ - - progress
47
+ - false
48
+ - - pruner
49
+ - median
50
+ - - sampler
51
+ - tpe
52
+ - - save_freq
53
+ - -1
54
+ - - save_replay_buffer
55
+ - false
56
+ - - seed
57
+ - 3073263478
58
+ - - storage
59
+ - null
60
+ - - study_name
61
+ - null
62
+ - - tensorboard_log
63
+ - runs/AntBulletEnv-v0__sac__3073263478__1671835214
64
+ - - track
65
+ - true
66
+ - - trained_agent
67
+ - ''
68
+ - - truncate_last_trajectory
69
+ - true
70
+ - - uuid
71
+ - false
72
+ - - vec_env
73
+ - dummy
74
+ - - verbose
75
+ - 1
76
+ - - wandb_entity
77
+ - openrlbenchmark
78
+ - - wandb_project_name
79
+ - sb3
80
+ - - yaml_file
81
+ - null
config.yml ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - batch_size
3
+ - 256
4
+ - - buffer_size
5
+ - 300000
6
+ - - ent_coef
7
+ - auto
8
+ - - gamma
9
+ - 0.98
10
+ - - gradient_steps
11
+ - 8
12
+ - - learning_rate
13
+ - 0.00073
14
+ - - learning_starts
15
+ - 10000
16
+ - - n_timesteps
17
+ - 1000000.0
18
+ - - policy
19
+ - MlpPolicy
20
+ - - policy_kwargs
21
+ - dict(log_std_init=-3, net_arch=[400, 300])
22
+ - - tau
23
+ - 0.02
24
+ - - train_freq
25
+ - 8
26
+ - - use_sde
27
+ - true
env_kwargs.yml ADDED
@@ -0,0 +1 @@
 
 
1
+ render_mode: rgb_array
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5c9d4a9e7624f5246ccf4804ffdeef71d402e7b72ac30fc014ec0d647008cb8c
3
+ size 1283285
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 3578.8669053999997, "std_reward": 26.376790006591403, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-03-01T22:40:51.395086"}
sac-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:abb758a93d498d87de7e6e340088a52b7a81a6ebf86b441f392821863866ea21
3
+ size 6020380
sac-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.3.0a2
sac-AntBulletEnv-v0/actor.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:639d73698448222fac9b513bf51be50ad723afaa5fea7d9121a0f7ff23993bd9
3
+ size 1099607
sac-AntBulletEnv-v0/critic.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c50a59fc6c48abd6ac5361d5c2bc52fc1a4d0b48d90329ccf93a1410a6ea8795
3
+ size 2175722
sac-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,138 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnNhYy5wb2xpY2llc5SMCVNBQ1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.sac.policies",
6
+ "__annotations__": "{'actor': <class 'stable_baselines3.sac.policies.Actor'>, 'critic': <class 'stable_baselines3.common.policies.ContinuousCritic'>, 'critic_target': <class 'stable_baselines3.common.policies.ContinuousCritic'>}",
7
+ "__doc__": "\n Policy class (with both actor and critic) for SAC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
8
+ "__init__": "<function SACPolicy.__init__ at 0x7fa5c6bd2200>",
9
+ "_build": "<function SACPolicy._build at 0x7fa5c6bd2290>",
10
+ "_get_constructor_parameters": "<function SACPolicy._get_constructor_parameters at 0x7fa5c6bd2320>",
11
+ "reset_noise": "<function SACPolicy.reset_noise at 0x7fa5c6bd23b0>",
12
+ "make_actor": "<function SACPolicy.make_actor at 0x7fa5c6bd2440>",
13
+ "make_critic": "<function SACPolicy.make_critic at 0x7fa5c6bd24d0>",
14
+ "forward": "<function SACPolicy.forward at 0x7fa5c6bd2560>",
15
+ "_predict": "<function SACPolicy._predict at 0x7fa5c6bd25f0>",
16
+ "set_training_mode": "<function SACPolicy.set_training_mode at 0x7fa5c6bd2680>",
17
+ "__abstractmethods__": "frozenset()",
18
+ "_abc_impl": "<_abc._abc_data object at 0x7fa5c6bd7840>"
19
+ },
20
+ "verbose": 1,
21
+ "policy_kwargs": {
22
+ "log_std_init": -3,
23
+ "net_arch": [
24
+ 400,
25
+ 300
26
+ ],
27
+ "use_sde": true
28
+ },
29
+ "num_timesteps": 1000000,
30
+ "_total_timesteps": 1000000,
31
+ "_num_timesteps_at_start": 0,
32
+ "seed": 0,
33
+ "action_noise": null,
34
+ "start_time": 1671835216851530424,
35
+ "learning_rate": {
36
+ ":type:": "<class 'function'>",
37
+ ":serialized:": "gAWVvQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/R+uvECNjsoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
38
+ },
39
+ "tensorboard_log": "runs/AntBulletEnv-v0__sac__3073263478__1671835214/AntBulletEnv-v0",
40
+ "_last_obs": null,
41
+ "_last_episode_starts": {
42
+ ":type:": "<class 'numpy.ndarray'>",
43
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
44
+ },
45
+ "_last_original_obs": {
46
+ ":type:": "<class 'numpy.ndarray'>",
47
+ ":serialized:": "gAWV5QAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZwAAAAAAAAADs1ar7Q0ni994Z/P2+7DD+Jpx++bUctvsi5vDy/8AW+dxc4PztWHL/vWTO9/nagPjUdgL+7/ba6EzTgPi88UT0QBUG/Eho2v+/aYD+3ZwU/QkWWvjO7wL613Ha/JJ5kPgAAgD8AAAAAAACAPwAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwFLHIaUjAFDlHSUUpQu"
48
+ },
49
+ "_episode_num": 1019,
50
+ "use_sde": true,
51
+ "sde_sample_freq": -1,
52
+ "_current_progress_remaining": 0.0,
53
+ "_stats_window_size": 100,
54
+ "ep_info_buffer": {
55
+ ":type:": "<class 'collections.deque'>",
56
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQKqyI4YrJ8yMAWyUTegDjAF0lEdAvdJFeHBUJnV9lChoBkdAqmxzEP1+RmgHTegDaAhHQL3a0CFsYVJ1fZQoaAZHQKrN1VGTcItoB03oA2gIR0C941SuU2UCdX2UKGgGR0CqxFVxjriVaAdN6ANoCEdAvevQFHJ9zHV9lChoBkdAqrkr8iwB52gHTegDaAhHQL30RN0NjLB1fZQoaAZHQKphMdnTRY1oB03oA2gIR0C9/LpUxVQzdX2UKGgGR0Cqo5uxbB42aAdN6ANoCEdAvgU5WHUMHHV9lChoBkdAqpIEA1ejVWgHTegDaAhHQL4NrSpBHCp1fZQoaAZHQKsNQZnctXhoB03oA2gIR0C+FiHkLhJidX2UKGgGR0Cqjqswco6TaAdN6ANoCEdAvh6ZcW0qpnV9lChoBkdAqt/u9g4OtmgHTegDaAhHQL4nCbONYKZ1fZQoaAZHQKrqTN9ph4NoB03oA2gIR0C+L5IVdonKdX2UKGgGR0Cqsf6X0Gu+aAdN6ANoCEdAvjgVm+TNdXV9lChoBkdAqpgQTwlSj2gHTegDaAhHQL5Ano9LYf51fZQoaAZHQKqk5Z1V5rxoB03oA2gIR0C+SSi9h7VsdX2UKGgGR0Cqb/Bsyi22aAdN6ANoCEdAvlGpHPNVznV9lChoBkdAqqfi9RJmNGgHTegDaAhHQL5aIvoePq91fZQoaAZHQKpz24FRpDhoB03oA2gIR0C+YpdwrDqGdX2UKGgGR0CqzlB4lhPTaAdN6ANoCEdAvmsIqy4WlHV9lChoBkdAqsC/1+RYBGgHTegDaAhHQL5zrWGh24d1fZQoaAZHQKq5/LM9r45oB03oA2gIR0C+fDiTY/VzdX2UKGgGR0CqikyiVSn+aAdN6ANoCEdAvoS/4fwI+nV9lChoBkdAquE8sH0K7mgHTegDaAhHQL6NOHzH0bt1fZQoaAZHQKq04tf5ULloB03oA2gIR0C+lbkz41xbdX2UKGgGR0Cqrzng5zYFaAdN6ANoCEdAvp40/9pAU3V9lChoBkdAqu0c03wTd2gHTegDaAhHQL6recNpdrx1fZQoaAZHQKoag8YAKfFoB03oA2gIR0C+s/keuFHsdX2UKGgGR0CqkNUdilSCaAdN6ANoCEdAvrxyKYRdyHV9lChoBkdAqkwyfapPymgHTegDaAhHQL7D9t9QXRB1fZQoaAZHQKpNktFrl/9oB03oA2gIR0C+zCw8r7O3dX2UKGgGR0Cqr9JV0cOtaAdN6ANoCEdAvtSQ84gieXV9lChoBkdAqv+SvxH5J2gHTegDaAhHQL7btN96Tnt1fZQoaAZHQKrXQb6P8yhoB03oA2gIR0C+4techC+ldX2UKGgGR0CqopR1oxpMaAdN6ANoCEdAvun7gJkXlHV9lChoBkdAqwSdklNUO2gHTegDaAhHQL7xSUDuBtl1fZQoaAZHQIhxt9tuUEBoB03oA2gIR0C++Zb0e2d/dX2UKGgGR0Cq1g9t/FzdaAdN6ANoCEdAvwITS3LFGXV9lChoBkdAqm7TUCq6v2gHTegDaAhHQL8KkjcmBvt1fZQoaAZHQKsCOG+sYEZoB03oA2gIR0C/Ew01/DtPdX2UKGgGR0CrAbzY/Vy4aAdN6ANoCEdAvxsyO1fE43V9lChoBkdAqsEkSuhbn2gHTegDaAhHQL8jpPDYRNB1fZQoaAZHQKrOkpobn5loB03oA2gIR0C/LCFRLsa9dX2UKGgGR0CqpsOstCiRaAdN6ANoCEdAvzSTkyULUnV9lChoBkdAqsnNITXarWgHTegDaAhHQL89BOoYNy51fZQoaAZHQKsHb4hUzbhoB03oA2gIR0C/RXbpV0cPdX2UKGgGR0Cq1KZzxPO6aAdN6ANoCEdAv03sy31BdHV9lChoBkdAqqfpo9LYgGgHTegDaAhHQL9WYwob4rV1fZQoaAZHQKqaLtMPBi1oB03oA2gIR0C/Xt7YK6WgdX2UKGgGR0CqxoCjcmBwaAdN6ANoCEdAv2dPFKkEcXV9lChoBkdAqv1ItWdVemgHTegDaAhHQL9vvxhlUZN1fZQoaAZHQKq3fO8kD6poB03oA2gIR0C/fP6x5cC6dX2UKGgGR0Cq3fVFH8TBaAdN6ANoCEdAv4Vv3Hq/unV9lChoBkdAqpl4+B6KL2gHTegDaAhHQL+N7W7e2ux1fZQoaAZHQKpzLlYEGJNoB03oA2gIR0C/lm4DYAbRdX2UKGgGR0CrBIflIVdpaAdN6ANoCEdAv57r7Hhjv3V9lChoBkdAqpFgk7fYSWgHTegDaAhHQL+naZw4sEt1fZQoaAZHQKoedAP/aQFoB03oA2gIR0C/r9tTLns+dX2UKGgGR0CrL7yWzF/AaAdN6ANoCEdAv7hWVKPGQ3V9lChoBkdAqqBIwK0D2mgHTegDaAhHQL/AygVoHs11fZQoaAZHQKpug1G9YfZoB03oA2gIR0C/yTsju8brdX2UKGgGR0Cq+hK0+kgwaAdN6ANoCEdAv9Guasp5NXV9lChoBkdAqudBTQ3PzGgHTegDaAhHQL/aLoegctJ1fZQoaAZHQKrjwbPyCnRoB03oA2gIR0C/4qc36yjYdX2UKGgGR0CqiUbu+h4/aAdN6ANoCEdAv+sfkLhJiHV9lChoBkdAquakxubZvmgHTegDaAhHQL/znNZ/0/Z1fZQoaAZHQKsk+2G7BftoB03oA2gIR0C//BUit7rtdX2UKGgGR0CqxgYBmwqzaAdN6ANoCEdAwAJDsY2sJnV9lChoBkdAqnT0MPSUkmgHTegDaAhHQMAGfrWRRuV1fZQoaAZHQKrx8/UvwmVoB03oA2gIR0DACr1yT6i1dX2UKGgGR0CpsxNqYZ2qaAdN6ANoCEdAwA78mBvrGHV9lChoBkdAqt92nwXqJWgHTegDaAhHQMATORnFo+R1fZQoaAZHQKrB7W3BpHtoB03oA2gIR0DAF3UpgCwKdX2UKGgGR0Cq0T4SHuZ1aAdN6ANoCEdAwBuOxptaZHV9lChoBkdAq0PlCXyAhGgHTegDaAhHQMAfwB2nsLR1fZQoaAZHQKorU0JF9a5oB03oA2gIR0DAI/k/dIoWdX2UKGgGR0Cqsnuk1uR+aAdN6ANoCEdAwCqClXzUZ3V9lChoBkdAqwU7h3qzJWgHTegDaAhHQMAuEaRyOrB1fZQoaAZHQKsJvr1uivhoB03oA2gIR0DAMfdSZSeidX2UKGgGR0Cq4KLfUF0QaAdN6ANoCEdAwDYuaqjrRnV9lChoBkdAq16+bLEDQ2gHTegDaAhHQMA6bjXnQpp1fZQoaAZHQKrK7s2NvO1oB03oA2gIR0DAPqxU70WedX2UKGgGR0Cq+600elsQaAdN6ANoCEdAwELnKQq7RXV9lChoBkdAqwa3DvVmSWgHTegDaAhHQMBHI6moBJZ1fZQoaAZHQKrpOPPszEdoB03oA2gIR0DAS2BQYUFjdX2UKGgGR0CqdfdpqREGaAdN6ANoCEdAwE+d3X7LuHV9lChoBkdAq0lwZKnNxGgHTegDaAhHQMBTz9upCKJ1fZQoaAZHQKqvLxLkCFNoB03oA2gIR0DAWAo2l2vCdX2UKGgGR0CqylwkHD77aAdN6ANoCEdAwFxD/EwWWXV9lChoBkdAqqEhNATqS2gHTegDaAhHQMBgffyoXKt1fZQoaAZHQKs+A23rleZoB03oA2gIR0DAZLXw3HaOdX2UKGgGR0CqirCQDFIeaAdN6ANoCEdAwGjuW69TP3V9lChoBkdAqxELsniNsGgHTegDaAhHQMBtK2ys0YV1fZQoaAZHQKsPNG0eEIxoB03oA2gIR0DAcWVdonKGdX2UKGgGR0Cq5nzjm0VraAdN6ANoCEdAwHWfTSb6QHV9lChoBkdAqd30FKTSs2gHTegDaAhHQMB53h0p3HJ1fZQoaAZHQKt56PIXCTFoB03oA2gIR0DAfhs4tHx0dX2UKGgGR0Cq0ksVk+X7aAdN6ANoCEdAwIJY2BJ7LXV9lChoBkdAqtv1ga3qiWgHTegDaAhHQMCGla4lQdl1fZQoaAZHQKsCe2gFotdoB03oA2gIR0DAitHjfek6dX2UKGgGR0CkAfVOsT37aAdN6ANoCEdAwI8vUnXumnVlLg=="
57
+ },
58
+ "ep_success_buffer": {
59
+ ":type:": "<class 'collections.deque'>",
60
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
61
+ },
62
+ "_n_updates": 990000,
63
+ "observation_space": {
64
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
65
+ ":serialized:": "gAWVlwIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxyFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaBVLHIWUaBl0lFKUjAZfc2hhcGWUSxyFlIwDbG93lGgRKJZwAAAAAAAAAAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UaAtLHIWUaBl0lFKUjARoaWdolGgRKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBl0lFKUjAhsb3dfcmVwcpSMBC1pbmaUjAloaWdoX3JlcHKUjANpbmaUjApfbnBfcmFuZG9tlE51Yi4=",
66
+ "dtype": "float32",
67
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
68
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
69
+ "_shape": [
70
+ 28
71
+ ],
72
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
73
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
74
+ "low_repr": "-inf",
75
+ "high_repr": "inf",
76
+ "_np_random": null
77
+ },
78
+ "action_space": {
79
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
80
+ ":serialized:": "gAWVkgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL+UaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjAQtMS4wlIwJaGlnaF9yZXBylIwDMS4wlIwKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwQX19nZW5lcmF0b3JfY3RvcpSTlIwFUENHNjSUaDKMFF9fYml0X2dlbmVyYXRvcl9jdG9ylJOUhpRSlH2UKIwNYml0X2dlbmVyYXRvcpSMBVBDRzY0lIwFc3RhdGWUfZQoaD2KEONhlaa3XlgJLUWWWTS1oRqMA2luY5SKEKlzeES8M4FYghr3OtvajUF1jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpRLAHVidWIu",
81
+ "dtype": "float32",
82
+ "bounded_below": "[ True True True True True True True True]",
83
+ "bounded_above": "[ True True True True True True True True]",
84
+ "_shape": [
85
+ 8
86
+ ],
87
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
88
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
89
+ "low_repr": "-1.0",
90
+ "high_repr": "1.0",
91
+ "_np_random": "Generator(PCG64)"
92
+ },
93
+ "n_envs": 1,
94
+ "buffer_size": 1,
95
+ "batch_size": 256,
96
+ "learning_starts": 10000,
97
+ "tau": 0.02,
98
+ "gamma": 0.98,
99
+ "gradient_steps": 8,
100
+ "optimize_memory_usage": false,
101
+ "replay_buffer_class": {
102
+ ":type:": "<class 'abc.ABCMeta'>",
103
+ ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
104
+ "__module__": "stable_baselines3.common.buffers",
105
+ "__annotations__": "{'observations': <class 'numpy.ndarray'>, 'next_observations': <class 'numpy.ndarray'>, 'actions': <class 'numpy.ndarray'>, 'rewards': <class 'numpy.ndarray'>, 'dones': <class 'numpy.ndarray'>, 'timeouts': <class 'numpy.ndarray'>}",
106
+ "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
107
+ "__init__": "<function ReplayBuffer.__init__ at 0x7fa5c6b06440>",
108
+ "add": "<function ReplayBuffer.add at 0x7fa5c6b064d0>",
109
+ "sample": "<function ReplayBuffer.sample at 0x7fa5c6b06560>",
110
+ "_get_samples": "<function ReplayBuffer._get_samples at 0x7fa5c6b065f0>",
111
+ "_maybe_cast_dtype": "<staticmethod(<function ReplayBuffer._maybe_cast_dtype at 0x7fa5c6b06680>)>",
112
+ "__abstractmethods__": "frozenset()",
113
+ "_abc_impl": "<_abc._abc_data object at 0x7fa59b5364c0>"
114
+ },
115
+ "replay_buffer_kwargs": {},
116
+ "train_freq": {
117
+ ":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
118
+ ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLCGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
119
+ },
120
+ "use_sde_at_warmup": false,
121
+ "target_entropy": -8.0,
122
+ "ent_coef": "auto",
123
+ "target_update_interval": 1,
124
+ "lr_schedule": {
125
+ ":type:": "<class 'function'>",
126
+ ":serialized:": "gAWVvQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/R+uvECNjsoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
127
+ },
128
+ "_action_repeat": [
129
+ null
130
+ ],
131
+ "surgeon": null,
132
+ "batch_norm_stats": [],
133
+ "batch_norm_stats_target": [],
134
+ "_last_action": {
135
+ ":type:": "<class 'numpy.ndarray'>",
136
+ ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAHVHdL8NsXe/8pp3v8Avb7+1xnq/GFl1v4o8br90Eno/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
137
+ }
138
+ }
sac-AntBulletEnv-v0/ent_coef_optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4fa91b17f2aab2d7499b05ab92ed66375fe55cbe3cb3265c886da5a133434806
3
+ size 1940
sac-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:79666fa26f4ebebd552e79c056235bb7b2880eaccdf5d92d6a766982a769ba0d
3
+ size 2723513
sac-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:27e2ef326731bc4a6d25a63632b26bcdf508a737f26c6c6880c86f2b7be13625
3
+ size 1180
sac-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.133+-x86_64-with-glibc2.31 # 1 SMP Tue Dec 19 13:14:11 UTC 2023
2
+ - Python: 3.10.13
3
+ - Stable-Baselines3: 2.3.0a2
4
+ - PyTorch: 2.1.2+cpu
5
+ - GPU Enabled: False
6
+ - Numpy: 1.26.3
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.29.0
9
+ - OpenAI Gym: 0.26.2
train_eval_metrics.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cc2df9cf20e96ea7c3adbacda9a6086a2f97405ba3661049da23f1d9c02f5973
3
+ size 34573