Emperor-WS commited on
Commit
d3346ff
1 Parent(s): ed4da3c

Initial commit

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: SAC
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 3436.13 +/- 14.91
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **SAC** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **SAC** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
27
+ and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
28
+
29
+ The RL Zoo is a training framework for Stable Baselines3
30
+ reinforcement learning agents,
31
+ with hyperparameter optimization and pre-trained agents included.
32
+
33
+ ## Usage (with SB3 RL Zoo)
34
+
35
+ RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
36
+ SB3: https://github.com/DLR-RM/stable-baselines3<br/>
37
+ SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
38
+
39
+ Install the RL Zoo (with SB3 and SB3-Contrib):
40
+ ```bash
41
+ pip install rl_zoo3
42
+ ```
43
+
44
+ ```
45
+ # Download model and save it into the logs/ folder
46
+ python -m rl_zoo3.load_from_hub --algo sac --env AntBulletEnv-v0 -orga Emperor-WS -f logs/
47
+ python -m rl_zoo3.enjoy --algo sac --env AntBulletEnv-v0 -f logs/
48
+ ```
49
+
50
+ If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
51
+ ```
52
+ python -m rl_zoo3.load_from_hub --algo sac --env AntBulletEnv-v0 -orga Emperor-WS -f logs/
53
+ python -m rl_zoo3.enjoy --algo sac --env AntBulletEnv-v0 -f logs/
54
+ ```
55
+
56
+ ## Training (with the RL Zoo)
57
+ ```
58
+ python -m rl_zoo3.train --algo sac --env AntBulletEnv-v0 -f logs/
59
+ # Upload the model and generate video (when possible)
60
+ python -m rl_zoo3.push_to_hub --algo sac --env AntBulletEnv-v0 -f logs/ -orga Emperor-WS
61
+ ```
62
+
63
+ ## Hyperparameters
64
+ ```python
65
+ OrderedDict([('batch_size', 256),
66
+ ('buffer_size', 300000),
67
+ ('ent_coef', 'auto'),
68
+ ('gamma', 0.98),
69
+ ('gradient_steps', 8),
70
+ ('learning_rate', 0.00073),
71
+ ('learning_starts', 10000),
72
+ ('n_timesteps', 1000000.0),
73
+ ('policy', 'MlpPolicy'),
74
+ ('policy_kwargs', 'dict(log_std_init=-3, net_arch=[400, 300])'),
75
+ ('tau', 0.02),
76
+ ('train_freq', 8),
77
+ ('use_sde', True),
78
+ ('normalize', False)])
79
+ ```
80
+
81
+ # Environment Arguments
82
+ ```python
83
+ {'render_mode': 'rgb_array'}
84
+ ```
args.yml ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - algo
3
+ - sac
4
+ - - conf_file
5
+ - null
6
+ - - device
7
+ - auto
8
+ - - env
9
+ - AntBulletEnv-v0
10
+ - - env_kwargs
11
+ - null
12
+ - - eval_env_kwargs
13
+ - null
14
+ - - eval_episodes
15
+ - 5
16
+ - - eval_freq
17
+ - 25000
18
+ - - gym_packages
19
+ - []
20
+ - - hyperparams
21
+ - null
22
+ - - log_folder
23
+ - logs/
24
+ - - log_interval
25
+ - -1
26
+ - - max_total_trials
27
+ - null
28
+ - - n_eval_envs
29
+ - 1
30
+ - - n_evaluations
31
+ - null
32
+ - - n_jobs
33
+ - 1
34
+ - - n_startup_trials
35
+ - 10
36
+ - - n_timesteps
37
+ - 500000
38
+ - - n_trials
39
+ - 500
40
+ - - no_optim_plots
41
+ - false
42
+ - - num_threads
43
+ - -1
44
+ - - optimization_log_path
45
+ - null
46
+ - - optimize_hyperparameters
47
+ - false
48
+ - - progress
49
+ - false
50
+ - - pruner
51
+ - median
52
+ - - sampler
53
+ - tpe
54
+ - - save_freq
55
+ - -1
56
+ - - save_replay_buffer
57
+ - false
58
+ - - seed
59
+ - 731695550
60
+ - - storage
61
+ - null
62
+ - - study_name
63
+ - null
64
+ - - tensorboard_log
65
+ - ''
66
+ - - track
67
+ - false
68
+ - - trained_agent
69
+ - rl-trained-agents/sac-AntBulletEnv-v0.zip
70
+ - - truncate_last_trajectory
71
+ - true
72
+ - - uuid
73
+ - false
74
+ - - vec_env
75
+ - dummy
76
+ - - verbose
77
+ - 1
78
+ - - wandb_entity
79
+ - null
80
+ - - wandb_project_name
81
+ - sb3
82
+ - - wandb_tags
83
+ - []
config.yml ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - batch_size
3
+ - 256
4
+ - - buffer_size
5
+ - 300000
6
+ - - ent_coef
7
+ - auto
8
+ - - gamma
9
+ - 0.98
10
+ - - gradient_steps
11
+ - 8
12
+ - - learning_rate
13
+ - 0.00073
14
+ - - learning_starts
15
+ - 10000
16
+ - - n_timesteps
17
+ - 1000000.0
18
+ - - policy
19
+ - MlpPolicy
20
+ - - policy_kwargs
21
+ - dict(log_std_init=-3, net_arch=[400, 300])
22
+ - - tau
23
+ - 0.02
24
+ - - train_freq
25
+ - 8
26
+ - - use_sde
27
+ - true
env_kwargs.yml ADDED
@@ -0,0 +1 @@
 
 
1
+ render_mode: rgb_array
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2bd14d084c7bb43375d2a237166e7af3c596e6f850f9b9d4da507af0a2f9ed04
3
+ size 1285857
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 3436.1275999, "std_reward": 14.909729299182679, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-02-26T00:38:43.813814"}
sac-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9542a9cc1b904673a5414b7fe8a1bf86be1301d7e91be1f43e219fadbe91f319
3
+ size 6021514
sac-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.3.0a2
sac-AntBulletEnv-v0/actor.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0b4ba7721e743c953e6aa5593d57a52670f05a9343420c7b1db4237deec9ddcc
3
+ size 1099799
sac-AntBulletEnv-v0/critic.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:96b66f6522ddda0e958d3f8ac037552f4a64a886f919f0b09a22d60fef683219
3
+ size 2176234
sac-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,138 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnNhYy5wb2xpY2llc5SMCVNBQ1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.sac.policies",
6
+ "__annotations__": "{'actor': <class 'stable_baselines3.sac.policies.Actor'>, 'critic': <class 'stable_baselines3.common.policies.ContinuousCritic'>, 'critic_target': <class 'stable_baselines3.common.policies.ContinuousCritic'>}",
7
+ "__doc__": "\n Policy class (with both actor and critic) for SAC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
8
+ "__init__": "<function SACPolicy.__init__ at 0x7da47b6f8550>",
9
+ "_build": "<function SACPolicy._build at 0x7da47b6f85e0>",
10
+ "_get_constructor_parameters": "<function SACPolicy._get_constructor_parameters at 0x7da47b6f8670>",
11
+ "reset_noise": "<function SACPolicy.reset_noise at 0x7da47b6f8700>",
12
+ "make_actor": "<function SACPolicy.make_actor at 0x7da47b6f8790>",
13
+ "make_critic": "<function SACPolicy.make_critic at 0x7da47b6f8820>",
14
+ "forward": "<function SACPolicy.forward at 0x7da47b6f88b0>",
15
+ "_predict": "<function SACPolicy._predict at 0x7da47b6f8940>",
16
+ "set_training_mode": "<function SACPolicy.set_training_mode at 0x7da47b6f89d0>",
17
+ "__abstractmethods__": "frozenset()",
18
+ "_abc_impl": "<_abc._abc_data object at 0x7da47b6f2200>"
19
+ },
20
+ "verbose": 1,
21
+ "policy_kwargs": {
22
+ "log_std_init": -3,
23
+ "net_arch": [
24
+ 400,
25
+ 300
26
+ ],
27
+ "use_sde": true
28
+ },
29
+ "num_timesteps": 300704,
30
+ "_total_timesteps": 500000,
31
+ "_num_timesteps_at_start": 0,
32
+ "seed": 0,
33
+ "action_noise": null,
34
+ "start_time": 1708903079341664422,
35
+ "learning_rate": {
36
+ ":type:": "<class 'function'>",
37
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9H668QI2OyhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
38
+ },
39
+ "tensorboard_log": null,
40
+ "_last_obs": null,
41
+ "_last_episode_starts": {
42
+ ":type:": "<class 'numpy.ndarray'>",
43
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
44
+ },
45
+ "_last_original_obs": {
46
+ ":type:": "<class 'numpy.ndarray'>",
47
+ ":serialized:": "gAWV5QAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZwAAAAAAAAAJLHVr7hnjA9C8N/PzVIeT9haXc9/iqnPZzmy700jRK+jT9TvuyDlj45c2G/rMGCv5Zxij2CRMU+xWqBP63hJ70JYNs+ZZhVP+kcKD9XbAe/vAY1vxgbtL5fkgo/6Qx9PgAAAAAAAIA/AAAAAAAAgD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwFLHIaUjAFDlHSUUpQu"
48
+ },
49
+ "_episode_num": 302,
50
+ "use_sde": true,
51
+ "sde_sample_freq": -1,
52
+ "_current_progress_remaining": 0.39859199999999995,
53
+ "_stats_window_size": 100,
54
+ "ep_info_buffer": {
55
+ ":type:": "<class 'collections.deque'>",
56
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQKis3MYdhiOMAWyUTegDjAF0lEdAqI4C1Vo6CHV9lChoBkdAqSup8OTaCmgHTegDaAhHQKiusbm2b5N1fZQoaAZHQKjk+ZTho/RoB03oA2gIR0CozhGKAJ9idX2UKGgGR0CooPvvBrN4aAdN6ANoCEdAqO0x77bcoHV9lChoBkdAqTJYeT3Zf2gHTegDaAhHQKkN/1cMVlB1fZQoaAZHQKjDBdKNAC5oB03oA2gIR0CpLjZimVJMdX2UKGgGR0CpM2eDWbw0aAdN6ANoCEdAqU4CP8yeqnV9lChoBkdAqR3oMnZ00WgHTegDaAhHQKlt1LRKHwh1fZQoaAZHQKk9Nf1pTMtoB03oA2gIR0CpjbDv3JxOdX2UKGgGR0CpdjO6unuRaAdN6ANoCEdAqa1s5XEIgXV9lChoBkdAqUEMDlo11mgHTegDaAhHQKnMhRnezld1fZQoaAZHQKlC7K+zt1JoB03oA2gIR0Cp7Y3Kji4sdX2UKGgGR0CpJpmTs6aLaAdN6ANoCEdAqg0YKIBRynV9lChoBkdAqQtt0cOsk2gHTegDaAhHQKos+pkPMB91fZQoaAZHQKlPM22G7BhoB03oA2gIR0CqTZMKkVN6dX2UKGgGR0Co6wt8uzyCaAdN6ANoCEdAqmzKJj2Ba3V9lChoBkdAqQs3642CNGgHTegDaAhHQKqMRzijtXx1fZQoaAZHQKfctrkbPyFoB03oA2gIR0CqrIVtXPqtdX2UKGgGR0CpGAuymhugaAdN6ANoCEdAqsyiSX+l03V9lChoBkdAqM+xNoJzDGgHTegDaAhHQKrsEJBPbfx1fZQoaAZHQKlXGaGYa5xoB03oA2gIR0CrC0++23KCdX2UKGgGR0CpM4B37k4naAdN6ANoCEdAqyvRB/qgRXV9lChoBkdAqXgUYZVGTmgHTegDaAhHQKtKo/cnE2p1fZQoaAZHQKjYAVO9FnZoB03oA2gIR0CraeBEa2nbdX2UKGgGR0CpphuNxVABaAdN6ANoCEdAq50tdmg8KXV9lChoBkdAqTGUy31BdGgHTegDaAhHQKu8tTyauwJ1fZQoaAZHQKlRE/X5FgFoB03oA2gIR0Cr22MEq2BrdX2UKGgGR0CpHhP2wmmcaAdN6ANoCEdAq/o8HGCI13V9lChoBkdAqZGHPkaMrGgHTegDaAhHQKwZPn9Nvfl1fZQoaAZHQKl9LfUnXupoB03oA2gIR0CsObYe1a4ddX2UKGgGR0CoASD7yhBaaAdN6ANoCEdArFiVcUuct3V9lChoBkdAqZph6MR6GGgHTegDaAhHQKx4MKCxu891fZQoaAZHQKkygbYK6WhoB03oA2gIR0CsmOgfMfRvdX2UKGgGR0CpVD6F/QSjaAdN6ANoCEdArLg7Aeq7y3V9lChoBkdAqV+q5PM0QGgHTegDaAhHQKzXjwIdELJ1fZQoaAZHQKlTEmKqGURoB03oA2gIR0Cs91GwaBI4dX2UKGgGR0CpCuEX1rZbaAdN6ANoCEdArRdzEcbR4XV9lChoBkdAqFeZcJMQE2gHTegDaAhHQK03DyT6i0x1fZQoaAZHQKmH03x4IKNoB03oA2gIR0CtVwNSIgvEdX2UKGgGR0Cpl+gTIvJzaAdN6ANoCEdArXgBY3eenXV9lChoBkdAqTaan1nM+2gHTegDaAhHQK2XH/9YOlR1fZQoaAZHQKlihb3XZoRoB03oA2gIR0CttvGZNO/MdX2UKGgGR0CojEmPo3aSaAdN6ANoCEdArdeX8XN1Q3V9lChoBkdAqQdLpJPIn2gHTegDaAhHQK326wWWQfZ1fZQoaAZHQKjkevkBCD5oB03oA2gIR0CuFgr5IpYtdX2UKGgGR0Cok0oSDh99aAdN6ANoCEdArjUzXvphW3V9lChoBkdAqZTKMcZLqWgHTegDaAhHQK5U6R8MNMJ1fZQoaAZHQKldliBGx2VoB03oA2gIR0CudCtpmEoOdX2UKGgGR0CpiiyTY/VzaAdN6ANoCEdArpLV3wCr93V9lChoBkdAqSJBYHPeHmgHTegDaAhHQK7FYAYpDu11fZQoaAZHQKjLWAq/dqNoB03oA2gIR0Cu5TsQd0aIdX2UKGgGR0CpUgdoWYWtaAdN6ANoCEdArwQh5qubJHV9lChoBkdAqUY68lHBlGgHTegDaAhHQK8jVOLzf791fZQoaAZHQKmBHfxc3VFoB03oA2gIR0CvQojlYEGJdX2UKGgGR0Cphd7AUL2IaAdN6ANoCEdAr2KzIJZ4fXV9lChoBkdAqaT4qbz9TGgHTegDaAhHQK+BZ225QP91fZQoaAZHQKlPVRu0kW1oB03oA2gIR0Cvn/AP/aQFdX2UKGgGR0CpXU/NzKcNaAdN6ANoCEdAr8Hi2UjcEnV9lChoBkdAqWaNlTWGy2gHTegDaAhHQK/jXnDBMzx1fZQoaAZHQKkZV99c8kloB03oA2gIR0CwARQfMfRvdX2UKGgGR0CpRbBBZ6ldaAdN6ANoCEdAsBDDBbfP5nV9lChoBkdAqZipCSidrmgHTegDaAhHQLAgautfXwt1fZQoaAZHQKmrqfRu0kZoB03oA2gIR0CwMCtsBQvYdX2UKGgGR0CpnftCRfWuaAdN6ANoCEdAsD+x0vGp/HV9lChoBkdAqY5SwSrYG2gHTegDaAhHQLBP52exwAF1fZQoaAZHQKmQav8qFytoB03oA2gIR0CwX5bxZuAJdX2UKGgGR0CplR9Mbm2caAdN6ANoCEdAsG9KquKXOXV9lChoBkdAqTTSfapPymgHTegDaAhHQLB/LNCZ4Od1fZQoaAZHQKm8/qcmShdoB03oA2gIR0CwjwWtuDSPdX2UKGgGR0CpoKc1fmcOaAdN6ANoCEdAsJ7NKtga33V9lChoBkdAqYQH8MuvlmgHTegDaAhHQLCuX1n/T9d1fZQoaAZHQKhC3pcHGCJoB03oA2gIR0CwvixDkU9IdX2UKGgGR0CpgMfqX4TLaAdN6ANoCEdAsM26WmgrY3V9lChoBkdAqamYDJU5uWgHTegDaAhHQLDdC7FKkEd1fZQoaAZHQKl++ed07r9oB03oA2gIR0Cw9loc3l0YdX2UKGgGR0Cp7tgA6uGLaAdN6ANoCEdAsQXuGSIP9XV9lChoBkdAqZ0EjHGS6mgHTegDaAhHQLEVgnGbTc91fZQoaAZHQKmqcXWvr4ZoB03oA2gIR0CxJSCr92ovdX2UKGgGR0Cpx+WMKkVOaAdN6ANoCEdAsTSITZg5R3V9lChoBkdAqWl09t/FzmgHTegDaAhHQLFEplPacqh1fZQoaAZHQKlf8pn6EaloB03oA2gIR0CxVDl5Sm65dX2UKGgGR0CprA2Ur08OaAdN6ANoCEdAsWPinDR+jXV9lChoBkdAprmv24/eL2gHTegDaAhHQLFzcsjVx0d1fZQoaAZHQKmlE3+dbxFoB03oA2gIR0Cxg1cl5WzXdX2UKGgGR0Cp5u/eLvTgaAdN6ANoCEdAsZKzmKZUk3V9lChoBkdAqadabjLjgmgHTegDaAhHQLGiHw2ETQF1fZQoaAZHQKmJ/HXEqDtoB03oA2gIR0CxsgUnTiKjdX2UKGgGR0CptzEc81XOaAdN6ANoCEdAscHZwEQoTnV9lChoBkdAqd9WV9nbqWgHTegDaAhHQLHRHcVxjrl1fZQoaAZHQKmrJUz9CNVoB03oA2gIR0Cx4QgAIY3vdX2UKGgGR0Cpd2083dbgaAdN6ANoCEdAsfCexIJ7cHV9lChoBkdAqSfVh7Vrh2gHTegDaAhHQLH/64OMERt1fZQoaAZHQKlu9Ov+wTxoB03oA2gIR0CyD4HAVO9GdX2UKGgGR0Cp2KX4bjtHaAdN6ANoCEdAsh9O4z7/GXV9lChoBkdAqaF4mCyyEGgHTegDaAhHQLIvG9ycTal1fZQoaAZHQKmnG1CPZIxoB03oA2gIR0CyPnSTpxFRdX2UKGgGR0CprY6isXBQaAdN6ANoCEdAsk3Zo9LYgHV9lChoBkdAqdqEi0OVgWgHTegDaAhHQLJd5F8ohIR1fZQoaAZHQKnw3J17pmpoB03oA2gIR0CybVC5iExqdX2UKGgGR0Cpw6pR4yGjaAdN6ANoCEdAsocPNu+AVnVlLg=="
57
+ },
58
+ "ep_success_buffer": {
59
+ ":type:": "<class 'collections.deque'>",
60
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
61
+ },
62
+ "_n_updates": 1280696,
63
+ "observation_space": {
64
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
65
+ ":serialized:": "gAWVlwIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxyFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaBVLHIWUaBl0lFKUjAZfc2hhcGWUSxyFlIwDbG93lGgRKJZwAAAAAAAAAAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UaAtLHIWUaBl0lFKUjARoaWdolGgRKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBl0lFKUjAhsb3dfcmVwcpSMBC1pbmaUjAloaWdoX3JlcHKUjANpbmaUjApfbnBfcmFuZG9tlE51Yi4=",
66
+ "dtype": "float32",
67
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
68
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
69
+ "_shape": [
70
+ 28
71
+ ],
72
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
73
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
74
+ "low_repr": "-inf",
75
+ "high_repr": "inf",
76
+ "_np_random": null
77
+ },
78
+ "action_space": {
79
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
80
+ ":serialized:": "gAWVkgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL+UaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjAQtMS4wlIwJaGlnaF9yZXBylIwDMS4wlIwKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwQX19nZW5lcmF0b3JfY3RvcpSTlIwFUENHNjSUaDKMFF9fYml0X2dlbmVyYXRvcl9jdG9ylJOUhpRSlH2UKIwNYml0X2dlbmVyYXRvcpSMBVBDRzY0lIwFc3RhdGWUfZQoaD2KEONhlaa3XlgJLUWWWTS1oRqMA2luY5SKEKlzeES8M4FYghr3OtvajUF1jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpRLAHVidWIu",
81
+ "dtype": "float32",
82
+ "bounded_below": "[ True True True True True True True True]",
83
+ "bounded_above": "[ True True True True True True True True]",
84
+ "_shape": [
85
+ 8
86
+ ],
87
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
88
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
89
+ "low_repr": "-1.0",
90
+ "high_repr": "1.0",
91
+ "_np_random": "Generator(PCG64)"
92
+ },
93
+ "n_envs": 1,
94
+ "buffer_size": 1,
95
+ "batch_size": 256,
96
+ "learning_starts": 10000,
97
+ "tau": 0.02,
98
+ "gamma": 0.98,
99
+ "gradient_steps": 8,
100
+ "optimize_memory_usage": false,
101
+ "replay_buffer_class": {
102
+ ":type:": "<class 'abc.ABCMeta'>",
103
+ ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
104
+ "__module__": "stable_baselines3.common.buffers",
105
+ "__annotations__": "{'observations': <class 'numpy.ndarray'>, 'next_observations': <class 'numpy.ndarray'>, 'actions': <class 'numpy.ndarray'>, 'rewards': <class 'numpy.ndarray'>, 'dones': <class 'numpy.ndarray'>, 'timeouts': <class 'numpy.ndarray'>}",
106
+ "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
107
+ "__init__": "<function ReplayBuffer.__init__ at 0x7da47b614790>",
108
+ "add": "<function ReplayBuffer.add at 0x7da47b614820>",
109
+ "sample": "<function ReplayBuffer.sample at 0x7da47b6148b0>",
110
+ "_get_samples": "<function ReplayBuffer._get_samples at 0x7da47b614940>",
111
+ "_maybe_cast_dtype": "<staticmethod(<function ReplayBuffer._maybe_cast_dtype at 0x7da47b6149d0>)>",
112
+ "__abstractmethods__": "frozenset()",
113
+ "_abc_impl": "<_abc._abc_data object at 0x7da47b79f3c0>"
114
+ },
115
+ "replay_buffer_kwargs": {},
116
+ "train_freq": {
117
+ ":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
118
+ ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLCGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
119
+ },
120
+ "use_sde_at_warmup": false,
121
+ "target_entropy": -8.0,
122
+ "ent_coef": "auto",
123
+ "target_update_interval": 1,
124
+ "lr_schedule": {
125
+ ":type:": "<class 'function'>",
126
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9H668QI2OyhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
127
+ },
128
+ "_action_repeat": [
129
+ null
130
+ ],
131
+ "surgeon": null,
132
+ "batch_norm_stats": [],
133
+ "batch_norm_stats_target": [],
134
+ "_last_action": {
135
+ ":type:": "<class 'numpy.ndarray'>",
136
+ ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAHVHdL8NsXe/8pp3v8Avb7+1xnq/GFl1v4o8br90Eno/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
137
+ }
138
+ }
sac-AntBulletEnv-v0/ent_coef_optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3ca370f3eb0e8b6c422377ec64d9d6f467599f67f64e31f92a48865ca01bed7c
3
+ size 1940
sac-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a90be075425a4aa4386f0ea9b3c539408058a9218cddfa44e79a519a32a902fb
3
+ size 2723961
sac-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9591e0e8d3482be236ace36693a8e7eef85dc7a6dca6386a965a7a76d7f1241e
3
+ size 1180
sac-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.3.0a2
4
+ - PyTorch: 2.1.0+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 1.25.2
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.29.1
9
+ - OpenAI Gym: 0.26.2
train_eval_metrics.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6fa25ab3740b620a1ec39f028c08eed3bad0fb2910a8fdae5bf4aad209582c68
3
+ size 11000