Emperor-WS commited on
Commit
e38d4c5
·
1 Parent(s): f3ad268

Initial commit

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - HalfCheetahBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: SAC
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: HalfCheetahBulletEnv-v0
16
+ type: HalfCheetahBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 3038.56 +/- 42.27
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **SAC** Agent playing **HalfCheetahBulletEnv-v0**
25
+ This is a trained model of a **SAC** agent playing **HalfCheetahBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
27
+ and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
28
+
29
+ The RL Zoo is a training framework for Stable Baselines3
30
+ reinforcement learning agents,
31
+ with hyperparameter optimization and pre-trained agents included.
32
+
33
+ ## Usage (with SB3 RL Zoo)
34
+
35
+ RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
36
+ SB3: https://github.com/DLR-RM/stable-baselines3<br/>
37
+ SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
38
+
39
+ Install the RL Zoo (with SB3 and SB3-Contrib):
40
+ ```bash
41
+ pip install rl_zoo3
42
+ ```
43
+
44
+ ```
45
+ # Download model and save it into the logs/ folder
46
+ python -m rl_zoo3.load_from_hub --algo sac --env HalfCheetahBulletEnv-v0 -orga Emperor-WS -f logs/
47
+ python -m rl_zoo3.enjoy --algo sac --env HalfCheetahBulletEnv-v0 -f logs/
48
+ ```
49
+
50
+ If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
51
+ ```
52
+ python -m rl_zoo3.load_from_hub --algo sac --env HalfCheetahBulletEnv-v0 -orga Emperor-WS -f logs/
53
+ python -m rl_zoo3.enjoy --algo sac --env HalfCheetahBulletEnv-v0 -f logs/
54
+ ```
55
+
56
+ ## Training (with the RL Zoo)
57
+ ```
58
+ python -m rl_zoo3.train --algo sac --env HalfCheetahBulletEnv-v0 -f logs/
59
+ # Upload the model and generate video (when possible)
60
+ python -m rl_zoo3.push_to_hub --algo sac --env HalfCheetahBulletEnv-v0 -f logs/ -orga Emperor-WS
61
+ ```
62
+
63
+ ## Hyperparameters
64
+ ```python
65
+ OrderedDict([('batch_size', 256),
66
+ ('buffer_size', 300000),
67
+ ('ent_coef', 'auto'),
68
+ ('gamma', 0.98),
69
+ ('gradient_steps', 8),
70
+ ('learning_rate', 0.00073),
71
+ ('learning_starts', 10000),
72
+ ('n_timesteps', 1000000.0),
73
+ ('policy', 'MlpPolicy'),
74
+ ('policy_kwargs', 'dict(log_std_init=-3, net_arch=[400, 300])'),
75
+ ('tau', 0.02),
76
+ ('train_freq', 8),
77
+ ('use_sde', True),
78
+ ('normalize', False)])
79
+ ```
80
+
81
+ # Environment Arguments
82
+ ```python
83
+ {'render_mode': 'rgb_array'}
84
+ ```
args.yml ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - algo
3
+ - sac
4
+ - - conf_file
5
+ - null
6
+ - - device
7
+ - auto
8
+ - - env
9
+ - HalfCheetahBulletEnv-v0
10
+ - - env_kwargs
11
+ - null
12
+ - - eval_env_kwargs
13
+ - null
14
+ - - eval_episodes
15
+ - 5
16
+ - - eval_freq
17
+ - 25000
18
+ - - gym_packages
19
+ - []
20
+ - - hyperparams
21
+ - null
22
+ - - log_folder
23
+ - logs/
24
+ - - log_interval
25
+ - -1
26
+ - - max_total_trials
27
+ - null
28
+ - - n_eval_envs
29
+ - 1
30
+ - - n_evaluations
31
+ - null
32
+ - - n_jobs
33
+ - 1
34
+ - - n_startup_trials
35
+ - 10
36
+ - - n_timesteps
37
+ - 1000000
38
+ - - n_trials
39
+ - 500
40
+ - - no_optim_plots
41
+ - false
42
+ - - num_threads
43
+ - -1
44
+ - - optimization_log_path
45
+ - null
46
+ - - optimize_hyperparameters
47
+ - false
48
+ - - progress
49
+ - false
50
+ - - pruner
51
+ - median
52
+ - - sampler
53
+ - tpe
54
+ - - save_freq
55
+ - -1
56
+ - - save_replay_buffer
57
+ - false
58
+ - - seed
59
+ - 3832775135
60
+ - - storage
61
+ - null
62
+ - - study_name
63
+ - null
64
+ - - tensorboard_log
65
+ - ''
66
+ - - track
67
+ - false
68
+ - - trained_agent
69
+ - rl-trained-agents/sac/HalfCheetahBulletEnv-v0_1/HalfCheetahBulletEnv-v0.zip
70
+ - - truncate_last_trajectory
71
+ - true
72
+ - - uuid
73
+ - false
74
+ - - vec_env
75
+ - dummy
76
+ - - verbose
77
+ - 1
78
+ - - wandb_entity
79
+ - null
80
+ - - wandb_project_name
81
+ - sb3
82
+ - - wandb_tags
83
+ - []
config.yml ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - batch_size
3
+ - 256
4
+ - - buffer_size
5
+ - 300000
6
+ - - ent_coef
7
+ - auto
8
+ - - gamma
9
+ - 0.98
10
+ - - gradient_steps
11
+ - 8
12
+ - - learning_rate
13
+ - 0.00073
14
+ - - learning_starts
15
+ - 10000
16
+ - - n_timesteps
17
+ - 1000000.0
18
+ - - policy
19
+ - MlpPolicy
20
+ - - policy_kwargs
21
+ - dict(log_std_init=-3, net_arch=[400, 300])
22
+ - - tau
23
+ - 0.02
24
+ - - train_freq
25
+ - 8
26
+ - - use_sde
27
+ - true
env_kwargs.yml ADDED
@@ -0,0 +1 @@
 
 
1
+ render_mode: rgb_array
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:56d0dc1a647834ae8cb3b618a8c72955f06b23ae55d520d8623542a1291464ef
3
+ size 1191850
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 3038.5576853000002, "std_reward": 42.26724311604498, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-02-27T01:39:44.261539"}
sac-HalfCheetahBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d708350c532e07ef81220b864902714ca4f1add3c17204e418514d75ab929bfb
3
+ size 5946007
sac-HalfCheetahBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.3.0a2
sac-HalfCheetahBulletEnv-v0/actor.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e320688b9e23b9a5077527b49b1a7f2903f1ab084bb8c4a4ee24add164ba864a
3
+ size 1083671
sac-HalfCheetahBulletEnv-v0/critic.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:78d5a574acf9e12ccb634bde2215a95b3c8ebf5fe85bcc4b7abb53156ef840e7
3
+ size 2150634
sac-HalfCheetahBulletEnv-v0/data ADDED
@@ -0,0 +1,138 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnNhYy5wb2xpY2llc5SMCVNBQ1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.sac.policies",
6
+ "__annotations__": "{'actor': <class 'stable_baselines3.sac.policies.Actor'>, 'critic': <class 'stable_baselines3.common.policies.ContinuousCritic'>, 'critic_target': <class 'stable_baselines3.common.policies.ContinuousCritic'>}",
7
+ "__doc__": "\n Policy class (with both actor and critic) for SAC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
8
+ "__init__": "<function SACPolicy.__init__ at 0x7e6a81b81090>",
9
+ "_build": "<function SACPolicy._build at 0x7e6a81b81120>",
10
+ "_get_constructor_parameters": "<function SACPolicy._get_constructor_parameters at 0x7e6a81b811b0>",
11
+ "reset_noise": "<function SACPolicy.reset_noise at 0x7e6a81b81240>",
12
+ "make_actor": "<function SACPolicy.make_actor at 0x7e6a81b812d0>",
13
+ "make_critic": "<function SACPolicy.make_critic at 0x7e6a81b81360>",
14
+ "forward": "<function SACPolicy.forward at 0x7e6a81b813f0>",
15
+ "_predict": "<function SACPolicy._predict at 0x7e6a81b81480>",
16
+ "set_training_mode": "<function SACPolicy.set_training_mode at 0x7e6a81b81510>",
17
+ "__abstractmethods__": "frozenset()",
18
+ "_abc_impl": "<_abc._abc_data object at 0x7e6a81b89cc0>"
19
+ },
20
+ "verbose": 1,
21
+ "policy_kwargs": {
22
+ "log_std_init": -3,
23
+ "net_arch": [
24
+ 400,
25
+ 300
26
+ ],
27
+ "use_sde": true
28
+ },
29
+ "num_timesteps": 501168,
30
+ "_total_timesteps": 1000000,
31
+ "_num_timesteps_at_start": 0,
32
+ "seed": 0,
33
+ "action_noise": null,
34
+ "start_time": 1708990741214169465,
35
+ "learning_rate": {
36
+ ":type:": "<class 'function'>",
37
+ ":serialized:": "gAWVqAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS9vcHQvY29uZGEvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvb3B0L2NvbmRhL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/R+uvECNjsoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
38
+ },
39
+ "tensorboard_log": null,
40
+ "_last_obs": null,
41
+ "_last_episode_starts": {
42
+ ":type:": "<class 'numpy.ndarray'>",
43
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
44
+ },
45
+ "_last_original_obs": {
46
+ ":type:": "<class 'numpy.ndarray'>",
47
+ ":serialized:": "gAWV3QAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZoAAAAAAAAAA+xIr4AAAAAAACAPzZsnT8AAAAAAoZ6PgAAAAAnopG9s0WEPoErQD962Sk++v+jv6B1IL/tbGg/Zq56P+a3v7uFWFA/+IaaPkthgD+KYM68AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSxqGlIwBQ5R0lFKULg=="
48
+ },
49
+ "_episode_num": 501,
50
+ "use_sde": true,
51
+ "sde_sample_freq": -1,
52
+ "_current_progress_remaining": 0.49883200000000005,
53
+ "_stats_window_size": 100,
54
+ "ep_info_buffer": {
55
+ ":type:": "<class 'collections.deque'>",
56
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQKdOYYSg5BGMAWyUTegDjAF0lEdAth8IqFyq/HV9lChoBkdAp4vGgxrSE2gHTegDaAhHQLYuHJ3xFy91fZQoaAZHQKdMbpsXSBtoB03oA2gIR0C2PWRxYJVsdX2UKGgGR0CmyxK1XvH+aAdN6ANoCEdAtkyRr/Khc3V9lChoBkdAp0C8NBnjAGgHTegDaAhHQLZb8FzdUKl1fZQoaAZHQKdP3uUD+zdoB03oA2gIR0C2a1se4kNXdX2UKGgGR0CnblqvFFUiaAdN6ANoCEdAtnqmqjrRjXV9lChoBkdAp20mIRAbAGgHTegDaAhHQLaJzHgP3BZ1fZQoaAZHQKdfat0V8CxoB03oA2gIR0C2mYLEgntwdX2UKGgGR0CnBcSR8twraAdN6ANoCEdAtqkgyi22HHV9lChoBkdAp1pVQ/HHWGgHTegDaAhHQLa47Muez2R1fZQoaAZHQKcS9y3kPtloB03oA2gIR0C2yFxZuAI6dX2UKGgGR0CnhOXr+o9+aAdN6ANoCEdAttgNYdQwbnV9lChoBkdAp3Ah/y5I6WgHTegDaAhHQLbn0labF0h1fZQoaAZHQKeIQEYfnwJoB03oA2gIR0C290tM9KVZdX2UKGgGR0CnMHYw7DEWaAdN6ANoCEdAtwanuG9HtnV9lChoBkdAp4qjBMzuW2gHTegDaAhHQLcWX7XQMQV1fZQoaAZHQKeGEwztTk1oB03oA2gIR0C3JbwpKBd2dX2UKGgGR0CnLZA3kxREaAdN6ANoCEdAtzTvi97F9HV9lChoBkdAppBN0aIeo2gHTegDaAhHQLdERO9FnZl1fZQoaAZHQKcWvVFQVKxoB03oA2gIR0C3U/t8JD3NdX2UKGgGR0CnVFV6Vt4zaAdN6ANoCEdAt2ORObiIcnV9lChoBkdAptwDrxAjZGgHTegDaAhHQLdzmkD6nBN1fZQoaAZHQKdDLUTcqONoB03oA2gIR0C3g4syrPt2dX2UKGgGR0CnF8DMmnfmaAdN6ANoCEdAt52uncclxHV9lChoBkdAp5zPXd0q6WgHTegDaAhHQLette7+T/11fZQoaAZHQKd1r8OTaCdoB03oA2gIR0C3vXSf16E8dX2UKGgGR0Cm6O/nW8RMaAdN6ANoCEdAt8w96hQFcXV9lChoBkdAp1KNTefqYGgHTegDaAhHQLfbZUG3WnV1fZQoaAZHQKd2YkN4JNVoB03oA2gIR0C36kMAiml7dX2UKGgGR0CnPZyjxkNGaAdN6ANoCEdAt/k9eAuqWHV9lChoBkdApx0tNi6QNmgHTegDaAhHQLgIEofjjrB1fZQoaAZHQKbH2OzY289oB03oA2gIR0C4Fw9qxkd4dX2UKGgGR0CnI91nuiN9aAdN6ANoCEdAuCYI8nuy/3V9lChoBkdAp35/9vS+g2gHTegDaAhHQLg1SYI0IkZ1fZQoaAZHQKaxDz5GjKxoB03oA2gIR0C4REv7rLQpdX2UKGgGR0Cm+KgUtZmqaAdN6ANoCEdAuFMRkMCtBHV9lChoBkdApxqWz8gp0GgHTegDaAhHQLhhkvZyuIR1fZQoaAZHQKcLh2ys0YVoB03oA2gIR0C4cDLvPToddX2UKGgGR0CnQMDu0CzUaAdN6ANoCEdAuH8TcmBvrHV9lChoBkdApzWXUtqYZ2gHTegDaAhHQLiOFT/yXld1fZQoaAZHQKdMWaVlf7doB03oA2gIR0C4nJt2Pkq+dX2UKGgGR0CnQUgt4A0baAdN6ANoCEdAuKrIKqn3tnV9lChoBkdApziPkq+ajWgHTegDaAhHQLi47Op84Px1fZQoaAZHQKck27HyVfNoB03oA2gIR0C4xxxn3+MqdX2UKGgGR0CnkaOcUdq+aAdN6ANoCEdAuNVLEit7r3V9lChoBkdAp16E3AEdNmgHTegDaAhHQLjjdh9srNJ1fZQoaAZHQKc50ACGN71oB03oA2gIR0C48a8kY4yXdX2UKGgGR0CnMmmQSzw+aAdN6ANoCEdAuP/OpFTef3V9lChoBkdApuP2oxYaHmgHTegDaAhHQLkXPAWznih1fZQoaAZHQKbffvuPV/doB03oA2gIR0C5JYADifg8dX2UKGgGR0Cm+uLO7g89aAdN6ANoCEdAuTOUkJKJ23V9lChoBkdAp13/aFmFrWgHTegDaAhHQLlBd2rn1Wd1fZQoaAZHQKd1ZvFWGRFoB03oA2gIR0C5T4QRsdkrdX2UKGgGR0Cnl9GJN0vHaAdN6ANoCEdAuV2FZNfw7XV9lChoBkdApzSz/ffoBGgHTegDaAhHQLlrvrEtNBZ1fZQoaAZHQKd3rF1jiGZoB03oA2gIR0C5ea0jkdWAdX2UKGgGR0CnTNcOCoS+aAdN6ANoCEdAuYfnpB5X2nV9lChoBkdApsrZtUGVzWgHTegDaAhHQLmV3fNRm9R1fZQoaAZHQKcDp8WsRxtoB03oA2gIR0C5pDBOk+HKdX2UKGgGR0CnWFGDDjzaaAdN6ANoCEdAubIf5qM3qHV9lChoBkdAp1SdI7Njb2gHTegDaAhHQLnAGVEuxr11fZQoaAZHQKeFZGo73f1oB03oA2gIR0C5ziQrlNlAdX2UKGgGR0Cnoc7jLjgiaAdN6ANoCEdAudwxN34bj3V9lChoBkdAp1yAUN8VpWgHTegDaAhHQLnqWJZW7vp1fZQoaAZHQKdR4s7MgU1oB03oA2gIR0C5+EW9L6DXdX2UKGgGR0CnXaTjm0VraAdN6ANoCEdAugZjKJVKgHV9lChoBkdApyiT56+nImgHTegDaAhHQLoUSJJGvwF1fZQoaAZHQKdqpECNjsloB03oA2gIR0C6IpxNqQA/dX2UKGgGR0CnSL0DEFW5aAdN6ANoCEdAujCtrKvFFXV9lChoBkdApu2xK3/gi2gHTegDaAhHQLo+r83++/R1fZQoaAZHQKcEbyeZof1oB03oA2gIR0C6TLRrvb48dX2UKGgGR0CnjkBYFJQMaAdN6ANoCEdAulrMbjtG/nV9lChoBkdAp3YUcjqv/2gHTegDaAhHQLpo5kxyn1p1fZQoaAZHQKeD6t29tdloB03oA2gIR0C6gBXirDIjdX2UKGgGR0CneFobn5i3aAdN6ANoCEdAuo4RppN9IHV9lChoBkdAp41wHNX5nGgHTegDaAhHQLqcLE6kqMF1fZQoaAZHQKbh4oy9EkVoB03oA2gIR0C6qjUqhDgJdX2UKGgGR0CnR/fqoqCpaAdN6ANoCEdAurgnc45tFnV9lChoBkdApnGAtBfKIWgHTegDaAhHQLrGHml67d11fZQoaAZHQKdp2XrMTvloB03oA2gIR0C61ATySV4YdX2UKGgGR0Cnn+jDCP6saAdN6ANoCEdAuuI0wnH/+HV9lChoBkdAp0PH+GXXy2gHTegDaAhHQLrwTsN2C/Z1fZQoaAZHQKfAe8lHBk9oB03oA2gIR0C6/jKgIyCWdX2UKGgGR0CnekRIz3yqaAdN6ANoCEdAuwwSr8zhxnV9lChoBkdAp613gYP5HmgHTegDaAhHQLsaMDl5nlJ1fZQoaAZHQKfJP24/eLxoB03oA2gIR0C7KCm9US7HdX2UKGgGR0CniEvD50r9aAdN6ANoCEdAuzYnisGPgnV9lChoBkdAp6D7+717IGgHTegDaAhHQLtEXm4Ajpt1fZQoaAZHQKd1XTkyULVoB03oA2gIR0C7Uo4IKMNudX2UKGgGR0CnDBYoy9EkaAdN6ANoCEdAu2DZ+NLlFXV9lChoBkdAp4xpIxxku2gHTegDaAhHQLtvDebutwJ1fZQoaAZHQKdWJXRw6yVoB03oA2gIR0C7fTY77sOYdX2UKGgGR0Cncv/d69kCaAdN6ANoCEdAu4uJ0U47zXV9lChoBkdAp4LQ79ycTmgHTegDaAhHQLuZgM7EHdJ1fZQoaAZHQKctbMKTjedoB03oA2gIR0C7p2b4zrNXdX2UKGgGR0Cne0Y2S+xoaAdN6ANoCEdAu7VOBWgezXV9lChoBkdAp0y6CUX532gHTegDaAhHQLvDLR5kbxV1fZQoaAZHQKcCw/iYLLJoB03oA2gIR0C70RHnMdLhdX2UKGgGR0CnSwUtyxRmaAdN6ANoCEdAu+gKlTFVDXVlLg=="
57
+ },
58
+ "ep_success_buffer": {
59
+ ":type:": "<class 'collections.deque'>",
60
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
61
+ },
62
+ "_n_updates": 1481160,
63
+ "observation_space": {
64
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
65
+ ":serialized:": "gAWVgwIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWGgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksahZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWGgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRoFUsahZRoGXSUUpSMBl9zaGFwZZRLGoWUjANsb3eUaBEolmgAAAAAAAAAAACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UaAtLGoWUaBl0lFKUjARoaWdolGgRKJZoAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgLSxqFlGgZdJRSlIwIbG93X3JlcHKUjAQtaW5mlIwJaGlnaF9yZXBylIwDaW5mlIwKX25wX3JhbmRvbZROdWIu",
66
+ "dtype": "float32",
67
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False]",
68
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False]",
69
+ "_shape": [
70
+ 26
71
+ ],
72
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
73
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf]",
74
+ "low_repr": "-inf",
75
+ "high_repr": "inf",
76
+ "_np_random": null
77
+ },
78
+ "action_space": {
79
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
80
+ ":serialized:": "gAWVfgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBgAAAAAAAAABAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBoWUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgYAAAAAAAAAAQEBAQEBlGgVSwaFlGgZdJRSlIwGX3NoYXBllEsGhZSMA2xvd5RoESiWGAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL+UaAtLBoWUaBl0lFKUjARoaWdolGgRKJYYAAAAAAAAAAAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sGhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UjBRudW1weS5yYW5kb20uX3BpY2tsZZSMEF9fZ2VuZXJhdG9yX2N0b3KUk5SMBVBDRzY0lGgyjBRfX2JpdF9nZW5lcmF0b3JfY3RvcpSTlIaUUpR9lCiMDWJpdF9nZW5lcmF0b3KUjAVQQ0c2NJSMBXN0YXRllH2UKGg9ihDjYZWmt15YCS1Fllk0taEajANpbmOUihCpc3hEvDOBWIIa9zrb2o1BdYwKaGFzX3VpbnQzMpRLAIwIdWludGVnZXKUSwB1YnViLg==",
81
+ "dtype": "float32",
82
+ "bounded_below": "[ True True True True True True]",
83
+ "bounded_above": "[ True True True True True True]",
84
+ "_shape": [
85
+ 6
86
+ ],
87
+ "low": "[-1. -1. -1. -1. -1. -1.]",
88
+ "high": "[1. 1. 1. 1. 1. 1.]",
89
+ "low_repr": "-1.0",
90
+ "high_repr": "1.0",
91
+ "_np_random": "Generator(PCG64)"
92
+ },
93
+ "n_envs": 1,
94
+ "buffer_size": 1,
95
+ "batch_size": 256,
96
+ "learning_starts": 10000,
97
+ "tau": 0.02,
98
+ "gamma": 0.98,
99
+ "gradient_steps": 8,
100
+ "optimize_memory_usage": false,
101
+ "replay_buffer_class": {
102
+ ":type:": "<class 'abc.ABCMeta'>",
103
+ ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
104
+ "__module__": "stable_baselines3.common.buffers",
105
+ "__annotations__": "{'observations': <class 'numpy.ndarray'>, 'next_observations': <class 'numpy.ndarray'>, 'actions': <class 'numpy.ndarray'>, 'rewards': <class 'numpy.ndarray'>, 'dones': <class 'numpy.ndarray'>, 'timeouts': <class 'numpy.ndarray'>}",
106
+ "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
107
+ "__init__": "<function ReplayBuffer.__init__ at 0x7e6a49ad52d0>",
108
+ "add": "<function ReplayBuffer.add at 0x7e6a49ad5360>",
109
+ "sample": "<function ReplayBuffer.sample at 0x7e6a49ad53f0>",
110
+ "_get_samples": "<function ReplayBuffer._get_samples at 0x7e6a49ad5480>",
111
+ "_maybe_cast_dtype": "<staticmethod(<function ReplayBuffer._maybe_cast_dtype at 0x7e6a49ad5510>)>",
112
+ "__abstractmethods__": "frozenset()",
113
+ "_abc_impl": "<_abc._abc_data object at 0x7e6a49c50a00>"
114
+ },
115
+ "replay_buffer_kwargs": {},
116
+ "train_freq": {
117
+ ":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
118
+ ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLCGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
119
+ },
120
+ "use_sde_at_warmup": false,
121
+ "target_entropy": -6.0,
122
+ "ent_coef": "auto",
123
+ "target_update_interval": 1,
124
+ "lr_schedule": {
125
+ ":type:": "<class 'function'>",
126
+ ":serialized:": "gAWVqAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS9vcHQvY29uZGEvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvb3B0L2NvbmRhL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/R+uvECNjsoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
127
+ },
128
+ "_action_repeat": [
129
+ null
130
+ ],
131
+ "surgeon": null,
132
+ "batch_norm_stats": [],
133
+ "batch_norm_stats_target": [],
134
+ "_last_action": {
135
+ ":type:": "<class 'numpy.ndarray'>",
136
+ ":serialized:": "gAWVjQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYYAAAAAAAAAOjKej9wTkW9BGpJP4jhQj+a6iQ/SK9cPpSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLAUsGhpSMAUOUdJRSlC4="
137
+ }
138
+ }
sac-HalfCheetahBulletEnv-v0/ent_coef_optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bf47a43cdf8b5d4dd7be0bc5243f66bc7f9ff463eda831ca5197db2a96383ef6
3
+ size 1940
sac-HalfCheetahBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ae9d4ebecee9ca9c9c15a8cc5015588046d7ac78611a61ed13676dc5634e8549
3
+ size 2690425
sac-HalfCheetahBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:47897ae03cca2c55994de8cdcfec8387848878c018d6238aa46171cfd7818a84
3
+ size 1180
sac-HalfCheetahBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.133+-x86_64-with-glibc2.31 # 1 SMP Tue Dec 19 13:14:11 UTC 2023
2
+ - Python: 3.10.13
3
+ - Stable-Baselines3: 2.3.0a2
4
+ - PyTorch: 2.1.2
5
+ - GPU Enabled: True
6
+ - Numpy: 1.26.3
7
+ - Cloudpickle: 3.0.0
8
+ - Gymnasium: 0.29.0
9
+ - OpenAI Gym: 0.26.2
train_eval_metrics.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5f3705a82e599712c0233cd8226d72482e907abfcbe97c2a946f2a4396efc820
3
+ size 17665