Emperor-WS
commited on
Commit
·
e38d4c5
1
Parent(s):
f3ad268
Initial commit
Browse files- .gitattributes +1 -0
- README.md +84 -0
- args.yml +83 -0
- config.yml +27 -0
- env_kwargs.yml +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- sac-HalfCheetahBulletEnv-v0.zip +3 -0
- sac-HalfCheetahBulletEnv-v0/_stable_baselines3_version +1 -0
- sac-HalfCheetahBulletEnv-v0/actor.optimizer.pth +3 -0
- sac-HalfCheetahBulletEnv-v0/critic.optimizer.pth +3 -0
- sac-HalfCheetahBulletEnv-v0/data +138 -0
- sac-HalfCheetahBulletEnv-v0/ent_coef_optimizer.pth +3 -0
- sac-HalfCheetahBulletEnv-v0/policy.pth +3 -0
- sac-HalfCheetahBulletEnv-v0/pytorch_variables.pth +3 -0
- sac-HalfCheetahBulletEnv-v0/system_info.txt +9 -0
- train_eval_metrics.zip +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- HalfCheetahBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: SAC
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: HalfCheetahBulletEnv-v0
|
16 |
+
type: HalfCheetahBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 3038.56 +/- 42.27
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **SAC** Agent playing **HalfCheetahBulletEnv-v0**
|
25 |
+
This is a trained model of a **SAC** agent playing **HalfCheetahBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
|
27 |
+
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
|
28 |
+
|
29 |
+
The RL Zoo is a training framework for Stable Baselines3
|
30 |
+
reinforcement learning agents,
|
31 |
+
with hyperparameter optimization and pre-trained agents included.
|
32 |
+
|
33 |
+
## Usage (with SB3 RL Zoo)
|
34 |
+
|
35 |
+
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
|
36 |
+
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
|
37 |
+
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
|
38 |
+
|
39 |
+
Install the RL Zoo (with SB3 and SB3-Contrib):
|
40 |
+
```bash
|
41 |
+
pip install rl_zoo3
|
42 |
+
```
|
43 |
+
|
44 |
+
```
|
45 |
+
# Download model and save it into the logs/ folder
|
46 |
+
python -m rl_zoo3.load_from_hub --algo sac --env HalfCheetahBulletEnv-v0 -orga Emperor-WS -f logs/
|
47 |
+
python -m rl_zoo3.enjoy --algo sac --env HalfCheetahBulletEnv-v0 -f logs/
|
48 |
+
```
|
49 |
+
|
50 |
+
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
|
51 |
+
```
|
52 |
+
python -m rl_zoo3.load_from_hub --algo sac --env HalfCheetahBulletEnv-v0 -orga Emperor-WS -f logs/
|
53 |
+
python -m rl_zoo3.enjoy --algo sac --env HalfCheetahBulletEnv-v0 -f logs/
|
54 |
+
```
|
55 |
+
|
56 |
+
## Training (with the RL Zoo)
|
57 |
+
```
|
58 |
+
python -m rl_zoo3.train --algo sac --env HalfCheetahBulletEnv-v0 -f logs/
|
59 |
+
# Upload the model and generate video (when possible)
|
60 |
+
python -m rl_zoo3.push_to_hub --algo sac --env HalfCheetahBulletEnv-v0 -f logs/ -orga Emperor-WS
|
61 |
+
```
|
62 |
+
|
63 |
+
## Hyperparameters
|
64 |
+
```python
|
65 |
+
OrderedDict([('batch_size', 256),
|
66 |
+
('buffer_size', 300000),
|
67 |
+
('ent_coef', 'auto'),
|
68 |
+
('gamma', 0.98),
|
69 |
+
('gradient_steps', 8),
|
70 |
+
('learning_rate', 0.00073),
|
71 |
+
('learning_starts', 10000),
|
72 |
+
('n_timesteps', 1000000.0),
|
73 |
+
('policy', 'MlpPolicy'),
|
74 |
+
('policy_kwargs', 'dict(log_std_init=-3, net_arch=[400, 300])'),
|
75 |
+
('tau', 0.02),
|
76 |
+
('train_freq', 8),
|
77 |
+
('use_sde', True),
|
78 |
+
('normalize', False)])
|
79 |
+
```
|
80 |
+
|
81 |
+
# Environment Arguments
|
82 |
+
```python
|
83 |
+
{'render_mode': 'rgb_array'}
|
84 |
+
```
|
args.yml
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - algo
|
3 |
+
- sac
|
4 |
+
- - conf_file
|
5 |
+
- null
|
6 |
+
- - device
|
7 |
+
- auto
|
8 |
+
- - env
|
9 |
+
- HalfCheetahBulletEnv-v0
|
10 |
+
- - env_kwargs
|
11 |
+
- null
|
12 |
+
- - eval_env_kwargs
|
13 |
+
- null
|
14 |
+
- - eval_episodes
|
15 |
+
- 5
|
16 |
+
- - eval_freq
|
17 |
+
- 25000
|
18 |
+
- - gym_packages
|
19 |
+
- []
|
20 |
+
- - hyperparams
|
21 |
+
- null
|
22 |
+
- - log_folder
|
23 |
+
- logs/
|
24 |
+
- - log_interval
|
25 |
+
- -1
|
26 |
+
- - max_total_trials
|
27 |
+
- null
|
28 |
+
- - n_eval_envs
|
29 |
+
- 1
|
30 |
+
- - n_evaluations
|
31 |
+
- null
|
32 |
+
- - n_jobs
|
33 |
+
- 1
|
34 |
+
- - n_startup_trials
|
35 |
+
- 10
|
36 |
+
- - n_timesteps
|
37 |
+
- 1000000
|
38 |
+
- - n_trials
|
39 |
+
- 500
|
40 |
+
- - no_optim_plots
|
41 |
+
- false
|
42 |
+
- - num_threads
|
43 |
+
- -1
|
44 |
+
- - optimization_log_path
|
45 |
+
- null
|
46 |
+
- - optimize_hyperparameters
|
47 |
+
- false
|
48 |
+
- - progress
|
49 |
+
- false
|
50 |
+
- - pruner
|
51 |
+
- median
|
52 |
+
- - sampler
|
53 |
+
- tpe
|
54 |
+
- - save_freq
|
55 |
+
- -1
|
56 |
+
- - save_replay_buffer
|
57 |
+
- false
|
58 |
+
- - seed
|
59 |
+
- 3832775135
|
60 |
+
- - storage
|
61 |
+
- null
|
62 |
+
- - study_name
|
63 |
+
- null
|
64 |
+
- - tensorboard_log
|
65 |
+
- ''
|
66 |
+
- - track
|
67 |
+
- false
|
68 |
+
- - trained_agent
|
69 |
+
- rl-trained-agents/sac/HalfCheetahBulletEnv-v0_1/HalfCheetahBulletEnv-v0.zip
|
70 |
+
- - truncate_last_trajectory
|
71 |
+
- true
|
72 |
+
- - uuid
|
73 |
+
- false
|
74 |
+
- - vec_env
|
75 |
+
- dummy
|
76 |
+
- - verbose
|
77 |
+
- 1
|
78 |
+
- - wandb_entity
|
79 |
+
- null
|
80 |
+
- - wandb_project_name
|
81 |
+
- sb3
|
82 |
+
- - wandb_tags
|
83 |
+
- []
|
config.yml
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - batch_size
|
3 |
+
- 256
|
4 |
+
- - buffer_size
|
5 |
+
- 300000
|
6 |
+
- - ent_coef
|
7 |
+
- auto
|
8 |
+
- - gamma
|
9 |
+
- 0.98
|
10 |
+
- - gradient_steps
|
11 |
+
- 8
|
12 |
+
- - learning_rate
|
13 |
+
- 0.00073
|
14 |
+
- - learning_starts
|
15 |
+
- 10000
|
16 |
+
- - n_timesteps
|
17 |
+
- 1000000.0
|
18 |
+
- - policy
|
19 |
+
- MlpPolicy
|
20 |
+
- - policy_kwargs
|
21 |
+
- dict(log_std_init=-3, net_arch=[400, 300])
|
22 |
+
- - tau
|
23 |
+
- 0.02
|
24 |
+
- - train_freq
|
25 |
+
- 8
|
26 |
+
- - use_sde
|
27 |
+
- true
|
env_kwargs.yml
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
render_mode: rgb_array
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:56d0dc1a647834ae8cb3b618a8c72955f06b23ae55d520d8623542a1291464ef
|
3 |
+
size 1191850
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 3038.5576853000002, "std_reward": 42.26724311604498, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-02-27T01:39:44.261539"}
|
sac-HalfCheetahBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d708350c532e07ef81220b864902714ca4f1add3c17204e418514d75ab929bfb
|
3 |
+
size 5946007
|
sac-HalfCheetahBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.3.0a2
|
sac-HalfCheetahBulletEnv-v0/actor.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e320688b9e23b9a5077527b49b1a7f2903f1ab084bb8c4a4ee24add164ba864a
|
3 |
+
size 1083671
|
sac-HalfCheetahBulletEnv-v0/critic.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:78d5a574acf9e12ccb634bde2215a95b3c8ebf5fe85bcc4b7abb53156ef840e7
|
3 |
+
size 2150634
|
sac-HalfCheetahBulletEnv-v0/data
ADDED
@@ -0,0 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnNhYy5wb2xpY2llc5SMCVNBQ1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.sac.policies",
|
6 |
+
"__annotations__": "{'actor': <class 'stable_baselines3.sac.policies.Actor'>, 'critic': <class 'stable_baselines3.common.policies.ContinuousCritic'>, 'critic_target': <class 'stable_baselines3.common.policies.ContinuousCritic'>}",
|
7 |
+
"__doc__": "\n Policy class (with both actor and critic) for SAC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
|
8 |
+
"__init__": "<function SACPolicy.__init__ at 0x7e6a81b81090>",
|
9 |
+
"_build": "<function SACPolicy._build at 0x7e6a81b81120>",
|
10 |
+
"_get_constructor_parameters": "<function SACPolicy._get_constructor_parameters at 0x7e6a81b811b0>",
|
11 |
+
"reset_noise": "<function SACPolicy.reset_noise at 0x7e6a81b81240>",
|
12 |
+
"make_actor": "<function SACPolicy.make_actor at 0x7e6a81b812d0>",
|
13 |
+
"make_critic": "<function SACPolicy.make_critic at 0x7e6a81b81360>",
|
14 |
+
"forward": "<function SACPolicy.forward at 0x7e6a81b813f0>",
|
15 |
+
"_predict": "<function SACPolicy._predict at 0x7e6a81b81480>",
|
16 |
+
"set_training_mode": "<function SACPolicy.set_training_mode at 0x7e6a81b81510>",
|
17 |
+
"__abstractmethods__": "frozenset()",
|
18 |
+
"_abc_impl": "<_abc._abc_data object at 0x7e6a81b89cc0>"
|
19 |
+
},
|
20 |
+
"verbose": 1,
|
21 |
+
"policy_kwargs": {
|
22 |
+
"log_std_init": -3,
|
23 |
+
"net_arch": [
|
24 |
+
400,
|
25 |
+
300
|
26 |
+
],
|
27 |
+
"use_sde": true
|
28 |
+
},
|
29 |
+
"num_timesteps": 501168,
|
30 |
+
"_total_timesteps": 1000000,
|
31 |
+
"_num_timesteps_at_start": 0,
|
32 |
+
"seed": 0,
|
33 |
+
"action_noise": null,
|
34 |
+
"start_time": 1708990741214169465,
|
35 |
+
"learning_rate": {
|
36 |
+
":type:": "<class 'function'>",
|
37 |
+
":serialized:": "gAWVqAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS9vcHQvY29uZGEvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvb3B0L2NvbmRhL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/R+uvECNjsoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
38 |
+
},
|
39 |
+
"tensorboard_log": null,
|
40 |
+
"_last_obs": null,
|
41 |
+
"_last_episode_starts": {
|
42 |
+
":type:": "<class 'numpy.ndarray'>",
|
43 |
+
":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
|
44 |
+
},
|
45 |
+
"_last_original_obs": {
|
46 |
+
":type:": "<class 'numpy.ndarray'>",
|
47 |
+
":serialized:": "gAWV3QAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZoAAAAAAAAAA+xIr4AAAAAAACAPzZsnT8AAAAAAoZ6PgAAAAAnopG9s0WEPoErQD962Sk++v+jv6B1IL/tbGg/Zq56P+a3v7uFWFA/+IaaPkthgD+KYM68AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSxqGlIwBQ5R0lFKULg=="
|
48 |
+
},
|
49 |
+
"_episode_num": 501,
|
50 |
+
"use_sde": true,
|
51 |
+
"sde_sample_freq": -1,
|
52 |
+
"_current_progress_remaining": 0.49883200000000005,
|
53 |
+
"_stats_window_size": 100,
|
54 |
+
"ep_info_buffer": {
|
55 |
+
":type:": "<class 'collections.deque'>",
|
56 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQKdOYYSg5BGMAWyUTegDjAF0lEdAth8IqFyq/HV9lChoBkdAp4vGgxrSE2gHTegDaAhHQLYuHJ3xFy91fZQoaAZHQKdMbpsXSBtoB03oA2gIR0C2PWRxYJVsdX2UKGgGR0CmyxK1XvH+aAdN6ANoCEdAtkyRr/Khc3V9lChoBkdAp0C8NBnjAGgHTegDaAhHQLZb8FzdUKl1fZQoaAZHQKdP3uUD+zdoB03oA2gIR0C2a1se4kNXdX2UKGgGR0CnblqvFFUiaAdN6ANoCEdAtnqmqjrRjXV9lChoBkdAp20mIRAbAGgHTegDaAhHQLaJzHgP3BZ1fZQoaAZHQKdfat0V8CxoB03oA2gIR0C2mYLEgntwdX2UKGgGR0CnBcSR8twraAdN6ANoCEdAtqkgyi22HHV9lChoBkdAp1pVQ/HHWGgHTegDaAhHQLa47Muez2R1fZQoaAZHQKcS9y3kPtloB03oA2gIR0C2yFxZuAI6dX2UKGgGR0CnhOXr+o9+aAdN6ANoCEdAttgNYdQwbnV9lChoBkdAp3Ah/y5I6WgHTegDaAhHQLbn0labF0h1fZQoaAZHQKeIQEYfnwJoB03oA2gIR0C290tM9KVZdX2UKGgGR0CnMHYw7DEWaAdN6ANoCEdAtwanuG9HtnV9lChoBkdAp4qjBMzuW2gHTegDaAhHQLcWX7XQMQV1fZQoaAZHQKeGEwztTk1oB03oA2gIR0C3JbwpKBd2dX2UKGgGR0CnLZA3kxREaAdN6ANoCEdAtzTvi97F9HV9lChoBkdAppBN0aIeo2gHTegDaAhHQLdERO9FnZl1fZQoaAZHQKcWvVFQVKxoB03oA2gIR0C3U/t8JD3NdX2UKGgGR0CnVFV6Vt4zaAdN6ANoCEdAt2ORObiIcnV9lChoBkdAptwDrxAjZGgHTegDaAhHQLdzmkD6nBN1fZQoaAZHQKdDLUTcqONoB03oA2gIR0C3g4syrPt2dX2UKGgGR0CnF8DMmnfmaAdN6ANoCEdAt52uncclxHV9lChoBkdAp5zPXd0q6WgHTegDaAhHQLette7+T/11fZQoaAZHQKd1r8OTaCdoB03oA2gIR0C3vXSf16E8dX2UKGgGR0Cm6O/nW8RMaAdN6ANoCEdAt8w96hQFcXV9lChoBkdAp1KNTefqYGgHTegDaAhHQLfbZUG3WnV1fZQoaAZHQKd2YkN4JNVoB03oA2gIR0C36kMAiml7dX2UKGgGR0CnPZyjxkNGaAdN6ANoCEdAt/k9eAuqWHV9lChoBkdApx0tNi6QNmgHTegDaAhHQLgIEofjjrB1fZQoaAZHQKbH2OzY289oB03oA2gIR0C4Fw9qxkd4dX2UKGgGR0CnI91nuiN9aAdN6ANoCEdAuCYI8nuy/3V9lChoBkdAp35/9vS+g2gHTegDaAhHQLg1SYI0IkZ1fZQoaAZHQKaxDz5GjKxoB03oA2gIR0C4REv7rLQpdX2UKGgGR0Cm+KgUtZmqaAdN6ANoCEdAuFMRkMCtBHV9lChoBkdApxqWz8gp0GgHTegDaAhHQLhhkvZyuIR1fZQoaAZHQKcLh2ys0YVoB03oA2gIR0C4cDLvPToddX2UKGgGR0CnQMDu0CzUaAdN6ANoCEdAuH8TcmBvrHV9lChoBkdApzWXUtqYZ2gHTegDaAhHQLiOFT/yXld1fZQoaAZHQKdMWaVlf7doB03oA2gIR0C4nJt2Pkq+dX2UKGgGR0CnQUgt4A0baAdN6ANoCEdAuKrIKqn3tnV9lChoBkdApziPkq+ajWgHTegDaAhHQLi47Op84Px1fZQoaAZHQKck27HyVfNoB03oA2gIR0C4xxxn3+MqdX2UKGgGR0CnkaOcUdq+aAdN6ANoCEdAuNVLEit7r3V9lChoBkdAp16E3AEdNmgHTegDaAhHQLjjdh9srNJ1fZQoaAZHQKc50ACGN71oB03oA2gIR0C48a8kY4yXdX2UKGgGR0CnMmmQSzw+aAdN6ANoCEdAuP/OpFTef3V9lChoBkdApuP2oxYaHmgHTegDaAhHQLkXPAWznih1fZQoaAZHQKbffvuPV/doB03oA2gIR0C5JYADifg8dX2UKGgGR0Cm+uLO7g89aAdN6ANoCEdAuTOUkJKJ23V9lChoBkdAp13/aFmFrWgHTegDaAhHQLlBd2rn1Wd1fZQoaAZHQKd1ZvFWGRFoB03oA2gIR0C5T4QRsdkrdX2UKGgGR0Cnl9GJN0vHaAdN6ANoCEdAuV2FZNfw7XV9lChoBkdApzSz/ffoBGgHTegDaAhHQLlrvrEtNBZ1fZQoaAZHQKd3rF1jiGZoB03oA2gIR0C5ea0jkdWAdX2UKGgGR0CnTNcOCoS+aAdN6ANoCEdAuYfnpB5X2nV9lChoBkdApsrZtUGVzWgHTegDaAhHQLmV3fNRm9R1fZQoaAZHQKcDp8WsRxtoB03oA2gIR0C5pDBOk+HKdX2UKGgGR0CnWFGDDjzaaAdN6ANoCEdAubIf5qM3qHV9lChoBkdAp1SdI7Njb2gHTegDaAhHQLnAGVEuxr11fZQoaAZHQKeFZGo73f1oB03oA2gIR0C5ziQrlNlAdX2UKGgGR0Cnoc7jLjgiaAdN6ANoCEdAudwxN34bj3V9lChoBkdAp1yAUN8VpWgHTegDaAhHQLnqWJZW7vp1fZQoaAZHQKdR4s7MgU1oB03oA2gIR0C5+EW9L6DXdX2UKGgGR0CnXaTjm0VraAdN6ANoCEdAugZjKJVKgHV9lChoBkdApyiT56+nImgHTegDaAhHQLoUSJJGvwF1fZQoaAZHQKdqpECNjsloB03oA2gIR0C6IpxNqQA/dX2UKGgGR0CnSL0DEFW5aAdN6ANoCEdAujCtrKvFFXV9lChoBkdApu2xK3/gi2gHTegDaAhHQLo+r83++/R1fZQoaAZHQKcEbyeZof1oB03oA2gIR0C6TLRrvb48dX2UKGgGR0CnjkBYFJQMaAdN6ANoCEdAulrMbjtG/nV9lChoBkdAp3YUcjqv/2gHTegDaAhHQLpo5kxyn1p1fZQoaAZHQKeD6t29tdloB03oA2gIR0C6gBXirDIjdX2UKGgGR0CneFobn5i3aAdN6ANoCEdAuo4RppN9IHV9lChoBkdAp41wHNX5nGgHTegDaAhHQLqcLE6kqMF1fZQoaAZHQKbh4oy9EkVoB03oA2gIR0C6qjUqhDgJdX2UKGgGR0CnR/fqoqCpaAdN6ANoCEdAurgnc45tFnV9lChoBkdApnGAtBfKIWgHTegDaAhHQLrGHml67d11fZQoaAZHQKdp2XrMTvloB03oA2gIR0C61ATySV4YdX2UKGgGR0Cnn+jDCP6saAdN6ANoCEdAuuI0wnH/+HV9lChoBkdAp0PH+GXXy2gHTegDaAhHQLrwTsN2C/Z1fZQoaAZHQKfAe8lHBk9oB03oA2gIR0C6/jKgIyCWdX2UKGgGR0CnekRIz3yqaAdN6ANoCEdAuwwSr8zhxnV9lChoBkdAp613gYP5HmgHTegDaAhHQLsaMDl5nlJ1fZQoaAZHQKfJP24/eLxoB03oA2gIR0C7KCm9US7HdX2UKGgGR0CniEvD50r9aAdN6ANoCEdAuzYnisGPgnV9lChoBkdAp6D7+717IGgHTegDaAhHQLtEXm4Ajpt1fZQoaAZHQKd1XTkyULVoB03oA2gIR0C7Uo4IKMNudX2UKGgGR0CnDBYoy9EkaAdN6ANoCEdAu2DZ+NLlFXV9lChoBkdAp4xpIxxku2gHTegDaAhHQLtvDebutwJ1fZQoaAZHQKdWJXRw6yVoB03oA2gIR0C7fTY77sOYdX2UKGgGR0Cncv/d69kCaAdN6ANoCEdAu4uJ0U47zXV9lChoBkdAp4LQ79ycTmgHTegDaAhHQLuZgM7EHdJ1fZQoaAZHQKctbMKTjedoB03oA2gIR0C7p2b4zrNXdX2UKGgGR0Cne0Y2S+xoaAdN6ANoCEdAu7VOBWgezXV9lChoBkdAp0y6CUX532gHTegDaAhHQLvDLR5kbxV1fZQoaAZHQKcCw/iYLLJoB03oA2gIR0C70RHnMdLhdX2UKGgGR0CnSwUtyxRmaAdN6ANoCEdAu+gKlTFVDXVlLg=="
|
57 |
+
},
|
58 |
+
"ep_success_buffer": {
|
59 |
+
":type:": "<class 'collections.deque'>",
|
60 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
61 |
+
},
|
62 |
+
"_n_updates": 1481160,
|
63 |
+
"observation_space": {
|
64 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
65 |
+
":serialized:": "gAWVgwIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWGgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksahZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWGgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRoFUsahZRoGXSUUpSMBl9zaGFwZZRLGoWUjANsb3eUaBEolmgAAAAAAAAAAACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UaAtLGoWUaBl0lFKUjARoaWdolGgRKJZoAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgLSxqFlGgZdJRSlIwIbG93X3JlcHKUjAQtaW5mlIwJaGlnaF9yZXBylIwDaW5mlIwKX25wX3JhbmRvbZROdWIu",
|
66 |
+
"dtype": "float32",
|
67 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False]",
|
68 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False]",
|
69 |
+
"_shape": [
|
70 |
+
26
|
71 |
+
],
|
72 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
73 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf]",
|
74 |
+
"low_repr": "-inf",
|
75 |
+
"high_repr": "inf",
|
76 |
+
"_np_random": null
|
77 |
+
},
|
78 |
+
"action_space": {
|
79 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
80 |
+
":serialized:": "gAWVfgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBgAAAAAAAAABAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBoWUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgYAAAAAAAAAAQEBAQEBlGgVSwaFlGgZdJRSlIwGX3NoYXBllEsGhZSMA2xvd5RoESiWGAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL+UaAtLBoWUaBl0lFKUjARoaWdolGgRKJYYAAAAAAAAAAAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sGhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UjBRudW1weS5yYW5kb20uX3BpY2tsZZSMEF9fZ2VuZXJhdG9yX2N0b3KUk5SMBVBDRzY0lGgyjBRfX2JpdF9nZW5lcmF0b3JfY3RvcpSTlIaUUpR9lCiMDWJpdF9nZW5lcmF0b3KUjAVQQ0c2NJSMBXN0YXRllH2UKGg9ihDjYZWmt15YCS1Fllk0taEajANpbmOUihCpc3hEvDOBWIIa9zrb2o1BdYwKaGFzX3VpbnQzMpRLAIwIdWludGVnZXKUSwB1YnViLg==",
|
81 |
+
"dtype": "float32",
|
82 |
+
"bounded_below": "[ True True True True True True]",
|
83 |
+
"bounded_above": "[ True True True True True True]",
|
84 |
+
"_shape": [
|
85 |
+
6
|
86 |
+
],
|
87 |
+
"low": "[-1. -1. -1. -1. -1. -1.]",
|
88 |
+
"high": "[1. 1. 1. 1. 1. 1.]",
|
89 |
+
"low_repr": "-1.0",
|
90 |
+
"high_repr": "1.0",
|
91 |
+
"_np_random": "Generator(PCG64)"
|
92 |
+
},
|
93 |
+
"n_envs": 1,
|
94 |
+
"buffer_size": 1,
|
95 |
+
"batch_size": 256,
|
96 |
+
"learning_starts": 10000,
|
97 |
+
"tau": 0.02,
|
98 |
+
"gamma": 0.98,
|
99 |
+
"gradient_steps": 8,
|
100 |
+
"optimize_memory_usage": false,
|
101 |
+
"replay_buffer_class": {
|
102 |
+
":type:": "<class 'abc.ABCMeta'>",
|
103 |
+
":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
|
104 |
+
"__module__": "stable_baselines3.common.buffers",
|
105 |
+
"__annotations__": "{'observations': <class 'numpy.ndarray'>, 'next_observations': <class 'numpy.ndarray'>, 'actions': <class 'numpy.ndarray'>, 'rewards': <class 'numpy.ndarray'>, 'dones': <class 'numpy.ndarray'>, 'timeouts': <class 'numpy.ndarray'>}",
|
106 |
+
"__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
|
107 |
+
"__init__": "<function ReplayBuffer.__init__ at 0x7e6a49ad52d0>",
|
108 |
+
"add": "<function ReplayBuffer.add at 0x7e6a49ad5360>",
|
109 |
+
"sample": "<function ReplayBuffer.sample at 0x7e6a49ad53f0>",
|
110 |
+
"_get_samples": "<function ReplayBuffer._get_samples at 0x7e6a49ad5480>",
|
111 |
+
"_maybe_cast_dtype": "<staticmethod(<function ReplayBuffer._maybe_cast_dtype at 0x7e6a49ad5510>)>",
|
112 |
+
"__abstractmethods__": "frozenset()",
|
113 |
+
"_abc_impl": "<_abc._abc_data object at 0x7e6a49c50a00>"
|
114 |
+
},
|
115 |
+
"replay_buffer_kwargs": {},
|
116 |
+
"train_freq": {
|
117 |
+
":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
|
118 |
+
":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLCGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
|
119 |
+
},
|
120 |
+
"use_sde_at_warmup": false,
|
121 |
+
"target_entropy": -6.0,
|
122 |
+
"ent_coef": "auto",
|
123 |
+
"target_update_interval": 1,
|
124 |
+
"lr_schedule": {
|
125 |
+
":type:": "<class 'function'>",
|
126 |
+
":serialized:": "gAWVqAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS9vcHQvY29uZGEvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvb3B0L2NvbmRhL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/R+uvECNjsoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
127 |
+
},
|
128 |
+
"_action_repeat": [
|
129 |
+
null
|
130 |
+
],
|
131 |
+
"surgeon": null,
|
132 |
+
"batch_norm_stats": [],
|
133 |
+
"batch_norm_stats_target": [],
|
134 |
+
"_last_action": {
|
135 |
+
":type:": "<class 'numpy.ndarray'>",
|
136 |
+
":serialized:": "gAWVjQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYYAAAAAAAAAOjKej9wTkW9BGpJP4jhQj+a6iQ/SK9cPpSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLAUsGhpSMAUOUdJRSlC4="
|
137 |
+
}
|
138 |
+
}
|
sac-HalfCheetahBulletEnv-v0/ent_coef_optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bf47a43cdf8b5d4dd7be0bc5243f66bc7f9ff463eda831ca5197db2a96383ef6
|
3 |
+
size 1940
|
sac-HalfCheetahBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ae9d4ebecee9ca9c9c15a8cc5015588046d7ac78611a61ed13676dc5634e8549
|
3 |
+
size 2690425
|
sac-HalfCheetahBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:47897ae03cca2c55994de8cdcfec8387848878c018d6238aa46171cfd7818a84
|
3 |
+
size 1180
|
sac-HalfCheetahBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.133+-x86_64-with-glibc2.31 # 1 SMP Tue Dec 19 13:14:11 UTC 2023
|
2 |
+
- Python: 3.10.13
|
3 |
+
- Stable-Baselines3: 2.3.0a2
|
4 |
+
- PyTorch: 2.1.2
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.26.3
|
7 |
+
- Cloudpickle: 3.0.0
|
8 |
+
- Gymnasium: 0.29.0
|
9 |
+
- OpenAI Gym: 0.26.2
|
train_eval_metrics.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5f3705a82e599712c0233cd8226d72482e907abfcbe97c2a946f2a4396efc820
|
3 |
+
size 17665
|