Emperor-WS commited on
Commit
e33bb2d
·
1 Parent(s): 2902b10

Initial commit

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - Walker2DBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: TD3
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: Walker2DBulletEnv-v0
16
+ type: Walker2DBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 2550.10 +/- 14.80
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **TD3** Agent playing **Walker2DBulletEnv-v0**
25
+ This is a trained model of a **TD3** agent playing **Walker2DBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
27
+ and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
28
+
29
+ The RL Zoo is a training framework for Stable Baselines3
30
+ reinforcement learning agents,
31
+ with hyperparameter optimization and pre-trained agents included.
32
+
33
+ ## Usage (with SB3 RL Zoo)
34
+
35
+ RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
36
+ SB3: https://github.com/DLR-RM/stable-baselines3<br/>
37
+ SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
38
+
39
+ Install the RL Zoo (with SB3 and SB3-Contrib):
40
+ ```bash
41
+ pip install rl_zoo3
42
+ ```
43
+
44
+ ```
45
+ # Download model and save it into the logs/ folder
46
+ python -m rl_zoo3.load_from_hub --algo td3 --env Walker2DBulletEnv-v0 -orga Emperor-WS -f logs/
47
+ python -m rl_zoo3.enjoy --algo td3 --env Walker2DBulletEnv-v0 -f logs/
48
+ ```
49
+
50
+ If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
51
+ ```
52
+ python -m rl_zoo3.load_from_hub --algo td3 --env Walker2DBulletEnv-v0 -orga Emperor-WS -f logs/
53
+ python -m rl_zoo3.enjoy --algo td3 --env Walker2DBulletEnv-v0 -f logs/
54
+ ```
55
+
56
+ ## Training (with the RL Zoo)
57
+ ```
58
+ python -m rl_zoo3.train --algo td3 --env Walker2DBulletEnv-v0 -f logs/
59
+ # Upload the model and generate video (when possible)
60
+ python -m rl_zoo3.push_to_hub --algo td3 --env Walker2DBulletEnv-v0 -f logs/ -orga Emperor-WS
61
+ ```
62
+
63
+ ## Hyperparameters
64
+ ```python
65
+ OrderedDict([('buffer_size', 200000),
66
+ ('gamma', 0.98),
67
+ ('gradient_steps', -1),
68
+ ('learning_rate', 0.001),
69
+ ('learning_starts', 10000),
70
+ ('n_timesteps', 1000000.0),
71
+ ('noise_std', 0.1),
72
+ ('noise_type', 'normal'),
73
+ ('policy', 'MlpPolicy'),
74
+ ('policy_kwargs', 'dict(net_arch=[400, 300])'),
75
+ ('train_freq', [1, 'episode']),
76
+ ('normalize', False)])
77
+ ```
78
+
79
+ # Environment Arguments
80
+ ```python
81
+ {'render_mode': 'rgb_array'}
82
+ ```
args.yml ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - algo
3
+ - td3
4
+ - - conf_file
5
+ - null
6
+ - - device
7
+ - auto
8
+ - - env
9
+ - Walker2DBulletEnv-v0
10
+ - - env_kwargs
11
+ - null
12
+ - - eval_episodes
13
+ - 5
14
+ - - eval_freq
15
+ - 25000
16
+ - - gym_packages
17
+ - []
18
+ - - hyperparams
19
+ - null
20
+ - - log_folder
21
+ - logs
22
+ - - log_interval
23
+ - -1
24
+ - - max_total_trials
25
+ - null
26
+ - - n_eval_envs
27
+ - 1
28
+ - - n_evaluations
29
+ - null
30
+ - - n_jobs
31
+ - 1
32
+ - - n_startup_trials
33
+ - 10
34
+ - - n_timesteps
35
+ - -1
36
+ - - n_trials
37
+ - 500
38
+ - - no_optim_plots
39
+ - false
40
+ - - num_threads
41
+ - -1
42
+ - - optimization_log_path
43
+ - null
44
+ - - optimize_hyperparameters
45
+ - false
46
+ - - progress
47
+ - false
48
+ - - pruner
49
+ - median
50
+ - - sampler
51
+ - tpe
52
+ - - save_freq
53
+ - -1
54
+ - - save_replay_buffer
55
+ - false
56
+ - - seed
57
+ - 1035828328
58
+ - - storage
59
+ - null
60
+ - - study_name
61
+ - null
62
+ - - tensorboard_log
63
+ - runs/Walker2DBulletEnv-v0__td3__1035828328__1672252942
64
+ - - track
65
+ - true
66
+ - - trained_agent
67
+ - ''
68
+ - - truncate_last_trajectory
69
+ - true
70
+ - - uuid
71
+ - false
72
+ - - vec_env
73
+ - dummy
74
+ - - verbose
75
+ - 1
76
+ - - wandb_entity
77
+ - openrlbenchmark
78
+ - - wandb_project_name
79
+ - sb3
80
+ - - yaml_file
81
+ - null
config.yml ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - buffer_size
3
+ - 200000
4
+ - - gamma
5
+ - 0.98
6
+ - - gradient_steps
7
+ - -1
8
+ - - learning_rate
9
+ - 0.001
10
+ - - learning_starts
11
+ - 10000
12
+ - - n_timesteps
13
+ - 1000000.0
14
+ - - noise_std
15
+ - 0.1
16
+ - - noise_type
17
+ - normal
18
+ - - policy
19
+ - MlpPolicy
20
+ - - policy_kwargs
21
+ - dict(net_arch=[400, 300])
22
+ - - train_freq
23
+ - - 1
24
+ - episode
env_kwargs.yml ADDED
@@ -0,0 +1 @@
 
 
1
+ render_mode: rgb_array
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7929f218571b955bf9942dcf8643834aa51b30feaf4110075b921dfd7e9abff9
3
+ size 1102795
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 2550.1013432, "std_reward": 14.801990800602246, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-03-02T17:02:32.124368"}
td3-Walker2DBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a56d24f7dad09d9cb1386495c7d66643424193ae27b325614867396ee35c64f6
3
+ size 6376308
td3-Walker2DBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.3.0a2
td3-Walker2DBulletEnv-v0/actor.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d4375e17a95f1288a42519190a38dcc94b8173a2afb641058afe493e7e6f8ec1
3
+ size 1055520
td3-Walker2DBulletEnv-v0/critic.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:80d4c123385e523d767df6a40e23a202084ed5018cacc067d0865129c38a676d
3
+ size 2124522
td3-Walker2DBulletEnv-v0/data ADDED
@@ -0,0 +1,134 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnRkMy5wb2xpY2llc5SMCVREM1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.td3.policies",
6
+ "__annotations__": "{'actor': <class 'stable_baselines3.td3.policies.Actor'>, 'actor_target': <class 'stable_baselines3.td3.policies.Actor'>, 'critic': <class 'stable_baselines3.common.policies.ContinuousCritic'>, 'critic_target': <class 'stable_baselines3.common.policies.ContinuousCritic'>}",
7
+ "__doc__": "\n Policy class (with both actor and critic) for TD3.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
8
+ "__init__": "<function TD3Policy.__init__ at 0x7ae480dae4d0>",
9
+ "_build": "<function TD3Policy._build at 0x7ae480dae560>",
10
+ "_get_constructor_parameters": "<function TD3Policy._get_constructor_parameters at 0x7ae480dae5f0>",
11
+ "make_actor": "<function TD3Policy.make_actor at 0x7ae480dae680>",
12
+ "make_critic": "<function TD3Policy.make_critic at 0x7ae480dae710>",
13
+ "forward": "<function TD3Policy.forward at 0x7ae480dae7a0>",
14
+ "_predict": "<function TD3Policy._predict at 0x7ae480dae830>",
15
+ "set_training_mode": "<function TD3Policy.set_training_mode at 0x7ae480dae8c0>",
16
+ "__abstractmethods__": "frozenset()",
17
+ "_abc_impl": "<_abc._abc_data object at 0x7ae480db0b40>"
18
+ },
19
+ "verbose": 1,
20
+ "policy_kwargs": {
21
+ "net_arch": [
22
+ 400,
23
+ 300
24
+ ]
25
+ },
26
+ "num_timesteps": 1000339,
27
+ "_total_timesteps": 1000000,
28
+ "_num_timesteps_at_start": 0,
29
+ "seed": 0,
30
+ "action_noise": {
31
+ ":type:": "<class 'stable_baselines3.common.noise.NormalActionNoise'>",
32
+ ":serialized:": "gAWVOgEAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5ub2lzZZSMEU5vcm1hbEFjdGlvbk5vaXNllJOUKYGUfZQojANfbXWUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwaFlIwBQ5R0lFKUjAZfc2lnbWGUaAgoljAAAAAAAAAAmpmZmZmZuT+amZmZmZm5P5qZmZmZmbk/mpmZmZmZuT+amZmZmZm5P5qZmZmZmbk/lGgPSwaFlGgTdJRSlHViLg==",
33
+ "_mu": "[0. 0. 0. 0. 0. 0.]",
34
+ "_sigma": "[0.1 0.1 0.1 0.1 0.1 0.1]"
35
+ },
36
+ "start_time": 1672252945185227909,
37
+ "learning_rate": {
38
+ ":type:": "<class 'function'>",
39
+ ":serialized:": "gAWVvQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
40
+ },
41
+ "tensorboard_log": "runs/Walker2DBulletEnv-v0__td3__1035828328__1672252942/Walker2DBulletEnv-v0",
42
+ "_last_obs": null,
43
+ "_last_episode_starts": {
44
+ ":type:": "<class 'numpy.ndarray'>",
45
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
46
+ },
47
+ "_last_original_obs": {
48
+ ":type:": "<class 'numpy.ndarray'>",
49
+ ":serialized:": "gAWVzQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZYAAAAAAAAAA2MpL4AAAAAAACAPzNdZD8AAAAAlMjeuwAAAAAVNFO/NHf8u/z5Db7DPNY+K7sePnxtAj4V7jS/FgCAPyYZWre4gEm9RluovZkEgD9fXUS6AACAPwAAgD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwFLFoaUjAFDlHSUUpQu"
50
+ },
51
+ "_episode_num": 2796,
52
+ "use_sde": false,
53
+ "sde_sample_freq": -1,
54
+ "_current_progress_remaining": -0.00033900000000008923,
55
+ "_stats_window_size": 100,
56
+ "ep_info_buffer": {
57
+ ":type:": "<class 'collections.deque'>",
58
+ ":serialized:": "gAWVOQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQFbueZof0VeMAWyUSzyMAXSUR0Cv9mqsMiKSdX2UKGgGR0CgQfKSowVTaAdNdANoCEdAr/hJCrtE5XV9lChoBkdAozFAcrAgxWgHTegDaAhHQLAAHRGMGX51fZQoaAZHQKNT+E3bVSZoB03oA2gIR0CwBI1Z9uxbdX2UKGgGR0Ci5HdehPCVaAdN6ANoCEdAsAj8ksz2vnV9lChoBkdAoyIwwPAfuGgHTegDaAhHQLANbWjGkvd1fZQoaAZHQKLD9lK9PDZoB03oA2gIR0CwEdzcVQANdX2UKGgGR0Ch6666z3RHaAdN6ANoCEdAsBZOJsO5KHV9lChoBkdAogtOqtHQQmgHTegDaAhHQLAatBqKxcF1fZQoaAZHQKHVOOyVv/BoB03oA2gIR0CwIvS4Wk8BdX2UKGgGR0Cc52jfNzKcaAdN9gJoCEdAsCcvMEA5rHV9lChoBkdAoy6QcFQl8mgHTegDaAhHQLAqv9vjwQV1fZQoaAZHQKK99W912aFoB03oA2gIR0CwLy+3Ytg8dX2UKGgGR0CjMgu14Pf9aAdN6ANoCEdAsDObDXOGCnV9lChoBkdAo3N2sLfDUGgHTegDaAhHQLA4BlvqC6J1fZQoaAZHQKIH86ltTDRoB03oA2gIR0CwPGm0Re1KdX2UKGgGR0CL4mgs9SuRaAdNdgFoCEdAsEBKZAprlHV9lChoBkdAo5xL/EOy3WgHTegDaAhHQLBCczFdcB51fZQoaAZHQKNdBmTTvy9oB03oA2gIR0CwRuOHJtBOdX2UKGgGR0CiVXh2OhkBaAdNvwNoCEdAsEtKNaQmu3V9lChoBkdAoofuOMl1KWgHTegDaAhHQLBPlYVIqb11fZQoaAZHQKN2n4TK1XxoB03oA2gIR0CwU/25tm+TdX2UKGgGR0Cjicmgam4zaAdN6ANoCEdAsFhtQ/HHWHV9lChoBkdAo3dc/SpiqmgHTegDaAhHQLBcyqlxffJ1fZQoaAZHQKMK5b1RLsdoB03oA2gIR0CwYSUSElE7dX2UKGgGR0Cj0P0kv9LpaAdN6ANoCEdAsGWHHbRF7XV9lChoBkdAovUlSXMQmWgHTegDaAhHQLBp6e1a4c51fZQoaAZHQKLJp7SiM5xoB03oA2gIR0CwblJJkGzKdX2UKGgGR0CjnG3QUpNLaAdN6ANoCEdAsHLB5UtI1HV9lChoBkdAnWLX4O+ZgGgHTQoDaAhHQLB2/GvwEyN1fZQoaAZHQKNMrsiSq2loB03kA2gIR0CwepWuDBdldX2UKGgGR0CjKfsN2C/XaAdN6ANoCEdAsH72sHSncnV9lChoBkdAoxnaThYNiGgHTegDaAhHQLCDXB6a9bp1fZQoaAZHQKNvCh3aBZpoB03oA2gIR0Cwh8qr/82rdX2UKGgGR0CjS4sYl6Z6aAdN6ANoCEdAsIw7HxSYPXV9lChoBkdAoyHmgUUO/mgHTegDaAhHQLCUoSsr/bV1fZQoaAZHQKLuBFGXokloB03oA2gIR0CwmRJKaodddX2UKGgGR0CTvq2x6fJ4aAdNDAJoCEdAsJ0S2TgVGnV9lChoBkdAo2TT7uUliWgHTegDaAhHQLCfw4AS39d1fZQoaAZHQKOhbT72tdRoB03oA2gIR0CwpCRkNFz/dX2UKGgGR0CjJFkhaC+UaAdN6ANoCEdAsKiVi9ZieHV9lChoBkdAox6nAoG6gGgHTegDaAhHQLCtBnwG4Zx1fZQoaAZHQKMiZKGL1mJoB03oA2gIR0CwsXbNnoPkdX2UKGgGR0BbqT72tdRjaAdLQWgIR0CwtRwmE5AAdX2UKGgGR0Ciz4bLdN34aAdN6ANoCEdAsLYyU1Q663V9lChoBkdAoo2S4J/oaGgHTegDaAhHQLC6oAIppex1fZQoaAZHQFciQOWjXWhoB0s5aAhHQLC+PEzwc5t1fZQoaAZHQI896raM72doB023AWgIR0Cwvs1XA/LUdX2UKGgGR0CjYEX/giu/aAdN6ANoCEdAsMEx8Sf16HV9lChoBkdAotYOVLSNO2gHTegDaAhHQLDFnbM5fdB1fZQoaAZHQFnaRZEDyOJoB0s6aAhHQLDJXGEPDpF1fZQoaAZHQKL+sq4H5ahoB03oA2gIR0CwymyDM/yHdX2UKGgGR0Ci5o7rs0HhaAdN6ANoCEdAsM75l6JIlXV9lChoBkdAoqpgC8vmHWgHTegDaAhHQLDTg5le4Td1fZQoaAZHQKKfvYjB2wFoB03oA2gIR0Cw2A9V7x/edX2UKGgGR0CjHiP9tMwlaAdN6ANoCEdAsNyOdZq20HV9lChoBkdAXAhedCmdiGgHS0ZoCEdAsOBLM2WIGnV9lChoBkdAopDK35N47mgHTegDaAhHQLDhX2i+L3t1fZQoaAZHQKLgb02cawVoB03oA2gIR0Cw5eJnctXgdX2UKGgGR0Cjouy8BdUsaAdN6ANoCEdAsOpx7rs0HnV9lChoBkdAopvBRVIZqGgHTegDaAhHQLDu/YiPhhp1fZQoaAZHQKKN9RqoIfNoB03oA2gIR0Cw84aGDcubdX2UKGgGR0B0Yke+23KCaAdLtGgIR0Cw91yOaOPvdX2UKGgGR0CQh2jBl+VkaAdNwwFoCEdAsPhpHavicXV9lChoBkdAos5x9w3o92gHTegDaAhHQLD67cVxjrl1fZQoaAZHQKMb97MPjGVoB03oA2gIR0Cw/20Zm7J5dX2UKGgGR0CiwtisOoYOaAdN6ANoCEdAsQPsZ/CqInV9lChoBkdAfSchy8zyjGgHS+VoCEdAsQjLNke6qnV9lChoBkdAoZZ++wkgOmgHTegDaAhHQLEKfnL7oB91fZQoaAZHQH7VTCHh0hhoB0vqaAhHQLEOYvbGm1p1fZQoaAZHQKJkcYGdI5JoB03oA2gIR0CxEBnuiN83dX2UKGgGR0CO10FzuF6BaAdNswFoCEdAsRQr6+FlCnV9lChoBkdAof+cx7AtWmgHTegDaAhHQLEWoVuaWop1fZQoaAZHQKLwXyEL6UJoB03oA2gIR0CxGyumzjWDdX2UKGgGR0BlZfek56t1aAdLZWgIR0CxHuzPSlWPdX2UKGgGR0CR5Kc8kleGaAdNAAJoCEdAsR+4uVX3g3V9lChoBkdAkeqxkAggYGgHTfQBaAhHQLEiA8v24/h1fZQoaAZHQKL6fF98Z1poB03oA2gIR0CxJK0OI68ydX2UKGgGR0CjYdFV1fVqaAdN6ANoCEdAsSk3FhoduHV9lChoBkdAo0Hyk43m3mgHTegDaAhHQLEtwJiiItV1fZQoaAZHQKKjmjjaPCFoB03oA2gIR0CxMjsFQl8gdX2UKGgGR0Cju/wqI7/5aAdN6ANoCEdAsTar003wTnV9lChoBkdAozGzIgeRxWgHTegDaAhHQLE7HY6GQCF1fZQoaAZHQGKTxcu8K5VoB0tRaAhHQLE+wivgWJt1fZQoaAZHQKNkRWkJrtVoB03oA2gIR0CxP97di2DydX2UKGgGR0CfLMobXHzZaAdNLgNoCEdAsUQdJyyUtHV9lChoBkdAolTS4Ds+mmgHTegDaAhHQLFH4eFtbcJ1fZQoaAZHQKMXZD1GsmxoB03oA2gIR0CxTFCWiUPhdX2UKGgGR0B69Nvegte2aAdL0GgIR0CxT9kHUtqYdX2UKGgGR0CiYSWsJY1YaAdN6ANoCEdAsVFwv0yxiXV9lChoBkdAk22NGEwnIGgHTRECaAhHQLFVdrUb1h91fZQoaAZHQKJtoPQOWjZoB03oA2gIR0CxWAlf3N9qdX2UKGgGR0CjVX+GO+7EaAdN6ANoCEdAsVx3eN1hcHV9lChoBkdAkoYRzeXRgWgHTe8BaAhHQLFgb5BTn7p1fZQoaAZHQKJ6d2ZiNKhoB03oA2gIR0CxYwUJ4SpSdX2UKGgGR0CjA25LIxQBaAdN6ANoCEdAsWdnuOS4fHV9lChoBkdAg1Vf1QIldGgHTRIBaAhHQLFrONaQmu11fZQoaAZHQKHCqRJVbRpoB03oA2gIR0CxbQ3vttygdX2UKGgGR0Ci2hwokRjCaAdN6ANoCEdAsXF7wjMV13V9lChoBkdAo2ZzTSb6QGgHTegDaAhHQLF535Z8rqd1ZS4="
59
+ },
60
+ "ep_success_buffer": {
61
+ ":type:": "<class 'collections.deque'>",
62
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
63
+ },
64
+ "_n_updates": 990341,
65
+ "observation_space": {
66
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
67
+ ":serialized:": "gAWVWwIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWFgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxaFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaBVLFoWUaBl0lFKUjAZfc2hhcGWUSxaFlIwDbG93lGgRKJZYAAAAAAAAAAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UaAtLFoWUaBl0lFKUjARoaWdolGgRKJZYAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLFoWUaBl0lFKUjAhsb3dfcmVwcpSMBC1pbmaUjAloaWdoX3JlcHKUjANpbmaUjApfbnBfcmFuZG9tlE51Yi4=",
68
+ "dtype": "float32",
69
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False]",
70
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False]",
71
+ "_shape": [
72
+ 22
73
+ ],
74
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf]",
75
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf]",
76
+ "low_repr": "-inf",
77
+ "high_repr": "inf",
78
+ "_np_random": null
79
+ },
80
+ "action_space": {
81
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
82
+ ":serialized:": "gAWVfgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBgAAAAAAAAABAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBoWUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgYAAAAAAAAAAQEBAQEBlGgVSwaFlGgZdJRSlIwGX3NoYXBllEsGhZSMA2xvd5RoESiWGAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL+UaAtLBoWUaBl0lFKUjARoaWdolGgRKJYYAAAAAAAAAAAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sGhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UjBRudW1weS5yYW5kb20uX3BpY2tsZZSMEF9fZ2VuZXJhdG9yX2N0b3KUk5SMBVBDRzY0lGgyjBRfX2JpdF9nZW5lcmF0b3JfY3RvcpSTlIaUUpR9lCiMDWJpdF9nZW5lcmF0b3KUjAVQQ0c2NJSMBXN0YXRllH2UKGg9ihDjYZWmt15YCS1Fllk0taEajANpbmOUihCpc3hEvDOBWIIa9zrb2o1BdYwKaGFzX3VpbnQzMpRLAIwIdWludGVnZXKUSwB1YnViLg==",
83
+ "dtype": "float32",
84
+ "bounded_below": "[ True True True True True True]",
85
+ "bounded_above": "[ True True True True True True]",
86
+ "_shape": [
87
+ 6
88
+ ],
89
+ "low": "[-1. -1. -1. -1. -1. -1.]",
90
+ "high": "[1. 1. 1. 1. 1. 1.]",
91
+ "low_repr": "-1.0",
92
+ "high_repr": "1.0",
93
+ "_np_random": "Generator(PCG64)"
94
+ },
95
+ "n_envs": 1,
96
+ "buffer_size": 1,
97
+ "batch_size": 100,
98
+ "learning_starts": 10000,
99
+ "tau": 0.005,
100
+ "gamma": 0.98,
101
+ "gradient_steps": -1,
102
+ "optimize_memory_usage": false,
103
+ "replay_buffer_class": {
104
+ ":type:": "<class 'abc.ABCMeta'>",
105
+ ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
106
+ "__module__": "stable_baselines3.common.buffers",
107
+ "__annotations__": "{'observations': <class 'numpy.ndarray'>, 'next_observations': <class 'numpy.ndarray'>, 'actions': <class 'numpy.ndarray'>, 'rewards': <class 'numpy.ndarray'>, 'dones': <class 'numpy.ndarray'>, 'timeouts': <class 'numpy.ndarray'>}",
108
+ "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
109
+ "__init__": "<function ReplayBuffer.__init__ at 0x7ae480cfa440>",
110
+ "add": "<function ReplayBuffer.add at 0x7ae480cfa4d0>",
111
+ "sample": "<function ReplayBuffer.sample at 0x7ae480cfa560>",
112
+ "_get_samples": "<function ReplayBuffer._get_samples at 0x7ae480cfa5f0>",
113
+ "_maybe_cast_dtype": "<staticmethod(<function ReplayBuffer._maybe_cast_dtype at 0x7ae480cfa680>)>",
114
+ "__abstractmethods__": "frozenset()",
115
+ "_abc_impl": "<_abc._abc_data object at 0x7ae480e70940>"
116
+ },
117
+ "replay_buffer_kwargs": {},
118
+ "train_freq": {
119
+ ":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
120
+ ":serialized:": "gAWVZAAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMB2VwaXNvZGWUhZRSlIaUgZQu"
121
+ },
122
+ "use_sde_at_warmup": false,
123
+ "policy_delay": 2,
124
+ "target_noise_clip": 0.5,
125
+ "target_policy_noise": 0.2,
126
+ "lr_schedule": {
127
+ ":type:": "<class 'function'>",
128
+ ":serialized:": "gAWVvQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
129
+ },
130
+ "actor_batch_norm_stats": [],
131
+ "critic_batch_norm_stats": [],
132
+ "actor_batch_norm_stats_target": [],
133
+ "critic_batch_norm_stats_target": []
134
+ }
td3-Walker2DBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:02d559db5be836d8dff8235c888b883eef4a3f5f1ffe447c465d14d813929f81
3
+ size 3177642
td3-Walker2DBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
td3-Walker2DBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.133+-x86_64-with-glibc2.31 # 1 SMP Tue Dec 19 13:14:11 UTC 2023
2
+ - Python: 3.10.13
3
+ - Stable-Baselines3: 2.3.0a2
4
+ - PyTorch: 2.1.2+cpu
5
+ - GPU Enabled: False
6
+ - Numpy: 1.26.3
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.29.0
9
+ - OpenAI Gym: 0.26.2
train_eval_metrics.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bfbcaa8b94db102eae3ee5e0b18701f30b7ed6b0e99ffad294d106411f6c157a
3
+ size 76742