Create config.json
Browse files- config.json +24 -0
config.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"model_type": "bert", # Change this based on your model type (e.g., gpt2, roberta, etc.)
|
3 |
+
"num_labels": 2, # Number of output labels for classification (adjust for your task)
|
4 |
+
"hidden_size": 768, # Hidden layer size (depends on your model)
|
5 |
+
"intermediate_size": 3072, # Intermediate size for feed-forward layers
|
6 |
+
"max_position_embeddings": 512, # Max token length
|
7 |
+
"num_attention_heads": 12, # Number of attention heads
|
8 |
+
"num_hidden_layers": 12, # Number of hidden layers in your transformer model
|
9 |
+
"vocab_size": 30522, # Size of tokenizer vocabulary
|
10 |
+
"hidden_act": "gelu", # Activation function in hidden layers
|
11 |
+
"initializer_range": 0.02, # Initialization range for weights
|
12 |
+
"layer_norm_eps": 1e-12, # Layer normalization epsilon
|
13 |
+
"pad_token_id": 0, # Padding token ID (usually 0)
|
14 |
+
"type_vocab_size": 2, # Type vocab size (typically 2 for sentence pairs)
|
15 |
+
"attention_probs_dropout_prob": 0.1, # Dropout probability for attention layers
|
16 |
+
"hidden_dropout_prob": 0.1, # Dropout probability for hidden layers
|
17 |
+
"use_cache": true, # Whether to cache past keys/values
|
18 |
+
"model_version": "1.0", # Your model version
|
19 |
+
"tokenizer_class": "BertTokenizer", # Tokenizer class (adjust for your model type)
|
20 |
+
"classifier_dropout": null, # Optional dropout for classification head
|
21 |
+
"architectures": [
|
22 |
+
"BertForSequenceClassification" # Model architecture type
|
23 |
+
]
|
24 |
+
}
|