Model save
Browse files- README.md +92 -0
- pytorch_model.bin +1 -1
README.md
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: other
|
3 |
+
base_model: google/mobilenet_v2_1.4_224
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- imagefolder
|
8 |
+
metrics:
|
9 |
+
- accuracy
|
10 |
+
model-index:
|
11 |
+
- name: MobileNet-V2-Retinopathy
|
12 |
+
results:
|
13 |
+
- task:
|
14 |
+
name: Image Classification
|
15 |
+
type: image-classification
|
16 |
+
dataset:
|
17 |
+
name: imagefolder
|
18 |
+
type: imagefolder
|
19 |
+
config: default
|
20 |
+
split: train
|
21 |
+
args: default
|
22 |
+
metrics:
|
23 |
+
- name: Accuracy
|
24 |
+
type: accuracy
|
25 |
+
value: 0.9306930693069307
|
26 |
+
---
|
27 |
+
|
28 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
29 |
+
should probably proofread and complete it, then remove this comment. -->
|
30 |
+
|
31 |
+
# MobileNet-V2-Retinopathy
|
32 |
+
|
33 |
+
This model is a fine-tuned version of [google/mobilenet_v2_1.4_224](https://huggingface.co/google/mobilenet_v2_1.4_224) on the imagefolder dataset.
|
34 |
+
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 0.2044
|
36 |
+
- Accuracy: 0.9307
|
37 |
+
|
38 |
+
## Model description
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Intended uses & limitations
|
43 |
+
|
44 |
+
More information needed
|
45 |
+
|
46 |
+
## Training and evaluation data
|
47 |
+
|
48 |
+
More information needed
|
49 |
+
|
50 |
+
## Training procedure
|
51 |
+
|
52 |
+
### Training hyperparameters
|
53 |
+
|
54 |
+
The following hyperparameters were used during training:
|
55 |
+
- learning_rate: 5e-05
|
56 |
+
- train_batch_size: 4
|
57 |
+
- eval_batch_size: 4
|
58 |
+
- seed: 42
|
59 |
+
- gradient_accumulation_steps: 4
|
60 |
+
- total_train_batch_size: 16
|
61 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
62 |
+
- lr_scheduler_type: linear
|
63 |
+
- lr_scheduler_warmup_ratio: 0.1
|
64 |
+
- num_epochs: 15
|
65 |
+
|
66 |
+
### Training results
|
67 |
+
|
68 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
69 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
70 |
+
| 0.4403 | 1.0 | 113 | 0.5330 | 0.7079 |
|
71 |
+
| 0.5538 | 2.0 | 227 | 0.4312 | 0.7723 |
|
72 |
+
| 0.542 | 3.0 | 340 | 0.5137 | 0.7426 |
|
73 |
+
| 0.4776 | 4.0 | 454 | 0.4656 | 0.7723 |
|
74 |
+
| 0.4244 | 5.0 | 567 | 1.0400 | 0.5990 |
|
75 |
+
| 0.4694 | 6.0 | 681 | 0.5936 | 0.7228 |
|
76 |
+
| 0.4494 | 7.0 | 794 | 0.4667 | 0.7822 |
|
77 |
+
| 0.4647 | 8.0 | 908 | 0.2629 | 0.8960 |
|
78 |
+
| 0.3646 | 9.0 | 1021 | 0.2287 | 0.8861 |
|
79 |
+
| 0.4827 | 10.0 | 1135 | 1.7967 | 0.5149 |
|
80 |
+
| 0.3679 | 11.0 | 1248 | 0.4184 | 0.8267 |
|
81 |
+
| 0.3454 | 12.0 | 1362 | 0.1885 | 0.9406 |
|
82 |
+
| 0.3562 | 13.0 | 1475 | 0.2798 | 0.9059 |
|
83 |
+
| 0.3397 | 14.0 | 1589 | 1.6444 | 0.5891 |
|
84 |
+
| 0.4047 | 14.93 | 1695 | 0.2044 | 0.9307 |
|
85 |
+
|
86 |
+
|
87 |
+
### Framework versions
|
88 |
+
|
89 |
+
- Transformers 4.34.0
|
90 |
+
- Pytorch 2.0.1+cu118
|
91 |
+
- Datasets 2.14.5
|
92 |
+
- Tokenizers 0.14.1
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 17576949
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8fa4c66956310895ef605fa0d44bc859fdac8f5ee61347295929288963e4cd60
|
3 |
size 17576949
|