--- license: other base_model: google/mobilenet_v2_1.4_224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: MobileNet-V2-Retinopathy results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9306930693069307 --- # MobileNet-V2-Retinopathy This model is a fine-tuned version of [google/mobilenet_v2_1.4_224](https://huggingface.co/google/mobilenet_v2_1.4_224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.2044 - Accuracy: 0.9307 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.4403 | 1.0 | 113 | 0.5330 | 0.7079 | | 0.5538 | 2.0 | 227 | 0.4312 | 0.7723 | | 0.542 | 3.0 | 340 | 0.5137 | 0.7426 | | 0.4776 | 4.0 | 454 | 0.4656 | 0.7723 | | 0.4244 | 5.0 | 567 | 1.0400 | 0.5990 | | 0.4694 | 6.0 | 681 | 0.5936 | 0.7228 | | 0.4494 | 7.0 | 794 | 0.4667 | 0.7822 | | 0.4647 | 8.0 | 908 | 0.2629 | 0.8960 | | 0.3646 | 9.0 | 1021 | 0.2287 | 0.8861 | | 0.4827 | 10.0 | 1135 | 1.7967 | 0.5149 | | 0.3679 | 11.0 | 1248 | 0.4184 | 0.8267 | | 0.3454 | 12.0 | 1362 | 0.1885 | 0.9406 | | 0.3562 | 13.0 | 1475 | 0.2798 | 0.9059 | | 0.3397 | 14.0 | 1589 | 1.6444 | 0.5891 | | 0.4047 | 14.93 | 1695 | 0.2044 | 0.9307 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.14.1