ericsorides commited on
Commit
7e5e3b7
1 Parent(s): 3dec47a

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +139 -0
README.md ADDED
@@ -0,0 +1,139 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - text-generation-inference
4
+ - llama
5
+ - llama3
6
+ ---
7
+
8
+
9
+ # Llama 3.1 8B Instruct with Key-Value-Cache enabled in ONNX fp16 format
10
+ - Model creator: [Meta Llama](https://huggingface.co/meta-llama)
11
+ - Original model: [Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct)
12
+
13
+ <!-- description start -->
14
+ ## Description
15
+
16
+ This repo contains the ONNX files for the ONNX conversion of Llama 3.1 8B Instruct done by Esperanto Technologies.
17
+ The model is in the fp16 format and has the KVC enabled.
18
+
19
+ <!-- description end -->
20
+
21
+ ## How to download ONNX model and weight files
22
+
23
+ The easiest way to obtain the model is to clone this whole repo.
24
+ Alternatively you can download the files is using the `huggingface-hub` Python library.
25
+
26
+ ```shell
27
+ pip3 install huggingface-hub>=0.17.1
28
+ ```
29
+
30
+ Then you can download any individual model file to the current directory, at high speed, with a command like this:
31
+
32
+ ```shell
33
+ huggingface-cli download Esperanto/llama3.1-8b-Instruct-kvc-fp16-onnx --local-dir llama3.1-8b-Instruct-kvc-fp16-onnx --local-dir-use-symlinks False
34
+ ```
35
+
36
+ For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli).
37
+
38
+ ## How to run from Python code using ONNXRuntime
39
+
40
+ This model can easily be ran in a CPU using [ONNXRuntime](https://onnxruntime.ai/).
41
+
42
+ #### First install the packages
43
+
44
+ ```bash
45
+ pip3 install onnx==1.16.1
46
+ pip3 install onnxruntime==1.17.1
47
+ ```
48
+
49
+ #### Example code: generate text with this model
50
+
51
+ We define the loop with greedy decoding:
52
+ ```python
53
+ import numpy as np
54
+ import onnxruntime
55
+ import onnx
56
+ from transformers import AutoTokenizer
57
+
58
+ def generate_text(model_path, prompt, tokenizer, max_gen_tokens, total_sequence, window, context):
59
+ model = onnx.load(model_path)
60
+
61
+ #we create the inputs for the first iteration
62
+ input_tensor = tokenizer(prompt, return_tensors="pt")
63
+ prompt_size = len(input_tensor['input_ids'][0])
64
+ actual_input = input_tensor['input_ids']
65
+ if prompt_size < window:
66
+ actual_input = np.concatenate((tokenizer.bos_token_id*np.ones([1, window - prompt_size], dtype = 'int64'),
67
+ actual_input), axis=1)
68
+ if prompt_size + max_gen_tokens > total_sequence:
69
+ print("ERROR: Longer total sequence is needed!")
70
+ return
71
+ first_attention = np.concatenate((np.zeros([1, total_sequence - window], dtype = 'int64'),
72
+ np.ones((1, window), dtype = 'int64')), axis=1)
73
+ max_gen_tokens += prompt_size #we need to generate on top of parsing the prompt
74
+ inputs_names =[node.name for node in model.graph.input]
75
+ output_names =[node.name for node in model.graph.output]
76
+ n_heads = 8 #gqa-heads of the kvc
77
+ inputs_dict = {}
78
+ inputs_dict['input_ids'] = actual_input[:, :window].reshape(1, window).numpy()
79
+ inputs_dict['attention_mask'] = first_attention
80
+ for name in inputs_names:
81
+ if name == 'input_ids' or name == 'attention_mask': continue
82
+ inputs_dict[name] = np.zeros([1, n_heads, context-window, 128], dtype="float16")
83
+ index = 0
84
+ new_token = np.array([10])
85
+ next_index = window
86
+ old_j = 0
87
+ total_input = actual_input.numpy()
88
+
89
+ rt_session = onnxruntime.InferenceSession(model_path)
90
+ ## We run the inferences
91
+ while next_index < max_gen_tokens:
92
+ if new_token.any() == tokenizer.eos_token_id:
93
+ break
94
+ #inference
95
+ output = rt_session.run(output_names, inputs_dict)
96
+ outs_dictionary = {name: content for (name, content) in zip (output_names, output)}
97
+ #we prepare the inputs for the next inference
98
+ for name in inputs_names:
99
+ if name == 'input_ids':
100
+ old_j = next_index
101
+ if next_index < prompt_size:
102
+ if prompt_size - next_index >= window: next_index += window
103
+ else: next_index = prompt_size
104
+ j = next_index - window
105
+ else:
106
+ next_index +=1
107
+ j = next_index - window
108
+ new_token = outs_dictionary['logits'].argmax(-1).reshape(1, window)
109
+ total_input = np.concatenate((total_input, new_token[: , -1:]), axis = 1)
110
+ inputs_dict['input_ids']= total_input[:, j:next_index].reshape(1, window)
111
+ elif name == 'attention_mask':
112
+ inputs_dict['attention_mask'] = np.concatenate((np.zeros((1, total_sequence-next_index), dtype = 'int64'), np.ones((1, next_index), dtype = 'int64')), axis=1)
113
+ else:
114
+ old_name = name.replace("past_key_values", "present")
115
+ inputs_dict[name] = outs_dictionary[old_name][:, :, next_index-old_j:context-window+(next_index - old_j), :]
116
+
117
+ answer = tokenizer.decode(total_input[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)
118
+ return answer
119
+ ```
120
+ We now run the inferences:
121
+
122
+ ```python
123
+ tokenizer = AutoTokenizer.from_pretrained("Esperanto/llama3.1-8b-Instruct-kvc-fp16-onnx")
124
+ model_path = "llama3.1-8b-Instruct-kvc-fp16-onnx/model.onnx"
125
+
126
+ max_gen_tokens = 20 #number of tokens we want tog eneral
127
+ total_sequence = 128 #total sequence_length
128
+ context = 1024 #the context to extend the kvc
129
+ window = 16 #number of tokens we want to parse at the time
130
+ messages = [
131
+ {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
132
+ {"role": "user", "content": "Who are you?"},
133
+ ]
134
+
135
+ prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
136
+
137
+ generated = generate_text(model_path, prompt, tokenizer, max_gen_tokens, total_sequence, window, context)
138
+ print(generated)
139
+ ```