Estebarra commited on
Commit
f9ddd09
·
1 Parent(s): 6758ca3

Initial Commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 253.66 +/- 29.81
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe41c9a4820>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe41c9a48b0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe41c9a4940>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe41c9a49d0>", "_build": "<function ActorCriticPolicy._build at 0x7fe41c9a4a60>", "forward": "<function ActorCriticPolicy.forward at 0x7fe41c9a4af0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fe41c9a4b80>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe41c9a4c10>", "_predict": "<function ActorCriticPolicy._predict at 0x7fe41c9a4ca0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe41c9a4d30>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe41c9a4dc0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe41c9a4e50>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fe41c99f960>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674019527270052729, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIBKSj7HpCg/q3I1PUfUl74UYA4+8UGrvQAAAAAAAAAAjc8xPsQK/D2lqs++pjBGvn75Pb1WlO+9AAAAAAAAAADmX2U9w8U/uotp27etAgSz9/UIO+0y/jYAAIA/AACAP4CJTr2ht5I9kMERPRzfyL0BkC+81sfKPAAAAAAAAAAAmgawPCAYrz8hXsw9JhOnvtux8TyLRAk+AAAAAAAAAADmZLw94ZSbul/9IDhEx0gzLN3bOuvVOLcAAIA/AACAP3MUnz3c14k+CNOqvazUGL6yWhy9dbFQuwAAAAAAAAAAM5EwPvSI9j2UCcW+m/sLvopMrb2dTpa8AAAAAAAAAAAzLwk8rjmMukb3ODM1rxCwj1buOeo5wbMAAIA/AACAP81iQr24zua5TciXMi2XTTBgWX67kQ+tsgAAgD8AAIA/puyePTdORT/VQt09JHPdvnS77T3G5Ts9AAAAAAAAAABNyq090dP3PRO2Fr5EPhe+lHgWPXDluL0AAAAAAAAAAA0fFT7+ero+9rkPvj92or7/OkQ9Xis0vQAAAAAAAAAADXCbvpRMj73ygYe9SkhFvBHz8T4iOQg9AACAPwAAgD8To7o+YXASP8N9A76NvY6+UbHMPXiqQr0AAAAAAAAAAIZvsj68D9U+ooAavi7soL4KHvw9VkhNvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVehAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI5xn7kg3Cb0CUhpRSlIwBbJRL/owBdJRHQJFVnX18LKF1fZQoaAZoCWgPQwhYq3ZNiApxQJSGlFKUaBVNPgFoFkdAkVZm3nZCfHV9lChoBmgJaA9DCDARb52/sXJAlIaUUpRoFU19AWgWR0CRVoIczZYgdX2UKGgGaAloD0MIw0oFFdVabUCUhpRSlGgVTRgBaBZHQJFWkdfb9Ih1fZQoaAZoCWgPQwjrU47JYgBuQJSGlFKUaBVNFgFoFkdAkVayHmA9V3V9lChoBmgJaA9DCMWOxqE+PXBAlIaUUpRoFU0FAWgWR0CRVyGZeAuqdX2UKGgGaAloD0MInFPJANB8cUCUhpRSlGgVTSYBaBZHQJFZF9lVcUx1fZQoaAZoCWgPQwgrFVRU/RxyQJSGlFKUaBVNJQFoFkdAkVmL9ETg23V9lChoBmgJaA9DCBE5fT0fOnFAlIaUUpRoFU1VAWgWR0CRWijLSuyNdX2UKGgGaAloD0MIQx8sYwO1cUCUhpRSlGgVTVIBaBZHQJFaPVpblil1fZQoaAZoCWgPQwi1Gach6l5xQJSGlFKUaBVNIAFoFkdAkVp0Es8PnXV9lChoBmgJaA9DCFUUr7J22XJAlIaUUpRoFU0RAWgWR0CRW0cJdB0IdX2UKGgGaAloD0MINQcI5uhRb0CUhpRSlGgVS/xoFkdAkVzsk2P1c3V9lChoBmgJaA9DCJUtknZjEHFAlIaUUpRoFU13AWgWR0CRXcD4QBgedX2UKGgGaAloD0MIfVuwVJcJbkCUhpRSlGgVTRQBaBZHQJFd1BVuJk51fZQoaAZoCWgPQwjb+BOVDR9uQJSGlFKUaBVNWwFoFkdAkV3iMHbAUXV9lChoBmgJaA9DCAMixJWzy25AlIaUUpRoFU0xAWgWR0CRXhsvIwM6dX2UKGgGaAloD0MIU3b6QR1XckCUhpRSlGgVTREBaBZHQJFe0MAmzB11fZQoaAZoCWgPQwhZNnNIauluQJSGlFKUaBVNGwFoFkdAkV7N4zJp4HV9lChoBmgJaA9DCPexgt8GvG1AlIaUUpRoFU0xAWgWR0CRX3OLiuMddX2UKGgGaAloD0MI19081eFgc0CUhpRSlGgVTRsBaBZHQJFfkHfMwDh1fZQoaAZoCWgPQwhqa0QwzmVwQJSGlFKUaBVNOAFoFkdAkV+wlfJFLHV9lChoBmgJaA9DCO+rcqEyp3BAlIaUUpRoFUvxaBZHQJFhR9YwIt11fZQoaAZoCWgPQwjzHmeaMLhvQJSGlFKUaBVNFwFoFkdAkWFfcnE2pHV9lChoBmgJaA9DCPylRX3S/XBAlIaUUpRoFU0eAWgWR0CRYfakAPupdX2UKGgGaAloD0MIyNKHLihscECUhpRSlGgVTSgBaBZHQJFi5PUKArh1fZQoaAZoCWgPQwjwaU5eZA5zQJSGlFKUaBVNUAFoFkdAkWRSOq//N3V9lChoBmgJaA9DCF02OudnHnJAlIaUUpRoFU1HAWgWR0CRZP8ZUDMedX2UKGgGaAloD0MImu0KfXCDcECUhpRSlGgVTSIBaBZHQJFlY+Pikwh1fZQoaAZoCWgPQwhZwW9DjKxuQJSGlFKUaBVNCAFoFkdAkWWNgKF7D3V9lChoBmgJaA9DCOl/uRat/3FAlIaUUpRoFU0XAWgWR0CRZbhYeT3ZdX2UKGgGaAloD0MIjln2JDB/ckCUhpRSlGgVTS4BaBZHQJFmbCoCMgl1fZQoaAZoCWgPQwiSO2wisx9yQJSGlFKUaBVNOAFoFkdAkWbASnLq2XV9lChoBmgJaA9DCJyKVBibTXFAlIaUUpRoFU0hAWgWR0CRZvVBlcyFdX2UKGgGaAloD0MIFR3J5X8QckCUhpRSlGgVTQkBaBZHQJFnAYTCcgB1fZQoaAZoCWgPQwilhGBV/a9xQJSGlFKUaBVNMAFoFkdAkWdbUb1h9nV9lChoBmgJaA9DCAjkEkceeHBAlIaUUpRoFU0sAWgWR0CRaBsd1dPddX2UKGgGaAloD0MI/OQoQJSfckCUhpRSlGgVTU8BaBZHQJFo2H1vl2h1fZQoaAZoCWgPQwiezhWlhBJyQJSGlFKUaBVNLgFoFkdAkWnRFZxJd3V9lChoBmgJaA9DCFuwVBcwzXFAlIaUUpRoFU03AWgWR0CRaflGPPszdX2UKGgGaAloD0MIt3njpLAtckCUhpRSlGgVTR4BaBZHQJFq4Mw1zhh1fZQoaAZoCWgPQwjrAl5m2EpyQJSGlFKUaBVNSwFoFkdAkWs3EZR8+nV9lChoBmgJaA9DCLJJfsQv43JAlIaUUpRoFU0cAWgWR0CRbX6jnFHbdX2UKGgGaAloD0MId4cUA6TLbkCUhpRSlGgVTScBaBZHQJFtrrVvuPV1fZQoaAZoCWgPQwiHw9LAT+twQJSGlFKUaBVNSQFoFkdAkW20pmVZ93V9lChoBmgJaA9DCD+p9um4K3JAlIaUUpRoFU0iAWgWR0CRbd/H5rP/dX2UKGgGaAloD0MI5GVNLPA1bUCUhpRSlGgVTUsBaBZHQJGBoi+tbLV1fZQoaAZoCWgPQwgF3V7S2CRyQJSGlFKUaBVNHQFoFkdAkYGsTN+so3V9lChoBmgJaA9DCNxGA3iLN3JAlIaUUpRoFU0TAWgWR0CRgek5IYm+dX2UKGgGaAloD0MIYOl8eNbucECUhpRSlGgVTSABaBZHQJGCDNOdoWZ1fZQoaAZoCWgPQwjuX1lp0sBrQJSGlFKUaBVNKwFoFkdAkYKF7pmmL3V9lChoBmgJaA9DCIY3a/A+ZHBAlIaUUpRoFU0gAWgWR0CRgpjhky1vdX2UKGgGaAloD0MI22lrRDDycECUhpRSlGgVTSABaBZHQJGDUfeUILR1fZQoaAZoCWgPQwghc2VQLXVwQJSGlFKUaBVNIwFoFkdAkYQb7XQMQXV9lChoBmgJaA9DCOhpwCCpfHFAlIaUUpRoFU0GAWgWR0CRhG8tf5UMdX2UKGgGaAloD0MIlnfVA6ZNcECUhpRSlGgVTQABaBZHQJGFGd07r9l1fZQoaAZoCWgPQwhfQgWHlxNwQJSGlFKUaBVL+2gWR0CRhUzUI9kjdX2UKGgGaAloD0MIX3tmSUBbcECUhpRSlGgVTT4BaBZHQJGFu/47A+J1fZQoaAZoCWgPQwio/Gt5JaFxQJSGlFKUaBVNCAFoFkdAkYgcwlByCHV9lChoBmgJaA9DCODYs+eyXm9AlIaUUpRoFUv7aBZHQJGIR9tuUEB1fZQoaAZoCWgPQwgjnuxmRitxQJSGlFKUaBVNFQFoFkdAkYhcXSBsh3V9lChoBmgJaA9DCIejq3R3229AlIaUUpRoFU0DAWgWR0CRiNO/L1VYdX2UKGgGaAloD0MIWkkrvqGhcECUhpRSlGgVTQMBaBZHQJGI/fKp1ih1fZQoaAZoCWgPQwiiDFUx1WdyQJSGlFKUaBVNMQFoFkdAkYkA+IMz/XV9lChoBmgJaA9DCLa+SGgLVXFAlIaUUpRoFU0yAWgWR0CRiS7CSA6NdX2UKGgGaAloD0MILqwb704ucUCUhpRSlGgVTQ0BaBZHQJGJwM9bHIZ1fZQoaAZoCWgPQwjGhQMhWdBxQJSGlFKUaBVNPQFoFkdAkYoXa37UG3V9lChoBmgJaA9DCIoFvqLbgW9AlIaUUpRoFU0pAWgWR0CRio3Sa3I/dX2UKGgGaAloD0MIlQ7W/7mob0CUhpRSlGgVS/ZoFkdAkYs9QCSzPnV9lChoBmgJaA9DCC5Yqgv4nW1AlIaUUpRoFU0kAWgWR0CRiz53C9AYdX2UKGgGaAloD0MIjnbc8DtMc0CUhpRSlGgVTQYBaBZHQJGLUPFvQ4V1fZQoaAZoCWgPQwgejUP97kFwQJSGlFKUaBVNBQFoFkdAkYxdnGsFMnV9lChoBmgJaA9DCMct5udGK3FAlIaUUpRoFU0UAWgWR0CRjIwkxASndX2UKGgGaAloD0MIhZZ1/1irbkCUhpRSlGgVS/5oFkdAkYyUhmoR7XV9lChoBmgJaA9DCM6JPbSPQHBAlIaUUpRoFU0PAWgWR0CRjy7g88s+dX2UKGgGaAloD0MIXOMz2f/JcUCUhpRSlGgVTQcBaBZHQJGP2+TNdJJ1fZQoaAZoCWgPQwhj00oh0EFyQJSGlFKUaBVNCgFoFkdAkZApIg/1QXV9lChoBmgJaA9DCM0GmWSkk3BAlIaUUpRoFU0qAWgWR0CRkPGG21D0dX2UKGgGaAloD0MIMGZLVgW9cECUhpRSlGgVTU0BaBZHQJGRXfJmukl1fZQoaAZoCWgPQwh3+GuyBqBxQJSGlFKUaBVNRAFoFkdAkZGTsMRYinV9lChoBmgJaA9DCJaX/E/+XnJAlIaUUpRoFU0oAWgWR0CRkdAzpHI7dX2UKGgGaAloD0MIf05BfrZIcUCUhpRSlGgVTSEBaBZHQJGR/cWTHKh1fZQoaAZoCWgPQwhXk6es5iNyQJSGlFKUaBVNBwFoFkdAkZJyJXQtz3V9lChoBmgJaA9DCFhXBWrxgHFAlIaUUpRoFU0mAWgWR0CRk2K3uuzQdX2UKGgGaAloD0MIG9gqwaLGckCUhpRSlGgVTTYBaBZHQJGT7/DLr5Z1fZQoaAZoCWgPQwhrniPy3X1vQJSGlFKUaBVNBwFoFkdAkZPsh9srNHV9lChoBmgJaA9DCJs90ArMsXBAlIaUUpRoFU0nAWgWR0CRlR5d4VyndX2UKGgGaAloD0MITdu/stJtcUCUhpRSlGgVTS8BaBZHQJGVTIHTqjd1fZQoaAZoCWgPQwieXinLkMZtQJSGlFKUaBVNjgFoFkdAkZWiprDZUXV9lChoBmgJaA9DCArWOJtOYnFAlIaUUpRoFU0GAWgWR0CRl9Qsf7rLdX2UKGgGaAloD0MITzxnC0iAcUCUhpRSlGgVTR8BaBZHQJGYUYj0L+h1fZQoaAZoCWgPQwiSsdr8f7dxQJSGlFKUaBVNBAFoFkdAkZiOogmqpHV9lChoBmgJaA9DCCSBBps6PXBAlIaUUpRoFU1VAWgWR0CRmVbH6uW9dX2UKGgGaAloD0MIGePD7CUycUCUhpRSlGgVTR4BaBZHQJGZyOq//Nt1fZQoaAZoCWgPQwg4h2u1h1VoQJSGlFKUaBVNdgJoFkdAkZoKoqCpWHV9lChoBmgJaA9DCAclzLT9GnFAlIaUUpRoFU0JAWgWR0CRmkY0l7dBdX2UKGgGaAloD0MId9hEZm4BckCUhpRSlGgVTSgBaBZHQJGapTo+wC91fZQoaAZoCWgPQwjBOo4f6i9xQJSGlFKUaBVNIgFoFkdAkZvk1VHWjHV9lChoBmgJaA9DCNlbyvnianJAlIaUUpRoFU1qAWgWR0CRnDMJx//edX2UKGgGaAloD0MILAyR01ekb0CUhpRSlGgVTQgBaBZHQJGdbJaJQ+F1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:21292c1aa6b842f1e9344d64fd3ffc96c5b258997e012efe8b590039fa5ef4ed
3
+ size 147416
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe41c9a4820>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe41c9a48b0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe41c9a4940>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe41c9a49d0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fe41c9a4a60>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fe41c9a4af0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fe41c9a4b80>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe41c9a4c10>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fe41c9a4ca0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe41c9a4d30>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe41c9a4dc0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe41c9a4e50>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7fe41c99f960>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1674019527270052729,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIBKSj7HpCg/q3I1PUfUl74UYA4+8UGrvQAAAAAAAAAAjc8xPsQK/D2lqs++pjBGvn75Pb1WlO+9AAAAAAAAAADmX2U9w8U/uotp27etAgSz9/UIO+0y/jYAAIA/AACAP4CJTr2ht5I9kMERPRzfyL0BkC+81sfKPAAAAAAAAAAAmgawPCAYrz8hXsw9JhOnvtux8TyLRAk+AAAAAAAAAADmZLw94ZSbul/9IDhEx0gzLN3bOuvVOLcAAIA/AACAP3MUnz3c14k+CNOqvazUGL6yWhy9dbFQuwAAAAAAAAAAM5EwPvSI9j2UCcW+m/sLvopMrb2dTpa8AAAAAAAAAAAzLwk8rjmMukb3ODM1rxCwj1buOeo5wbMAAIA/AACAP81iQr24zua5TciXMi2XTTBgWX67kQ+tsgAAgD8AAIA/puyePTdORT/VQt09JHPdvnS77T3G5Ts9AAAAAAAAAABNyq090dP3PRO2Fr5EPhe+lHgWPXDluL0AAAAAAAAAAA0fFT7+ero+9rkPvj92or7/OkQ9Xis0vQAAAAAAAAAADXCbvpRMj73ygYe9SkhFvBHz8T4iOQg9AACAPwAAgD8To7o+YXASP8N9A76NvY6+UbHMPXiqQr0AAAAAAAAAAIZvsj68D9U+ooAavi7soL4KHvw9VkhNvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVehAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI5xn7kg3Cb0CUhpRSlIwBbJRL/owBdJRHQJFVnX18LKF1fZQoaAZoCWgPQwhYq3ZNiApxQJSGlFKUaBVNPgFoFkdAkVZm3nZCfHV9lChoBmgJaA9DCDARb52/sXJAlIaUUpRoFU19AWgWR0CRVoIczZYgdX2UKGgGaAloD0MIw0oFFdVabUCUhpRSlGgVTRgBaBZHQJFWkdfb9Ih1fZQoaAZoCWgPQwjrU47JYgBuQJSGlFKUaBVNFgFoFkdAkVayHmA9V3V9lChoBmgJaA9DCMWOxqE+PXBAlIaUUpRoFU0FAWgWR0CRVyGZeAuqdX2UKGgGaAloD0MInFPJANB8cUCUhpRSlGgVTSYBaBZHQJFZF9lVcUx1fZQoaAZoCWgPQwgrFVRU/RxyQJSGlFKUaBVNJQFoFkdAkVmL9ETg23V9lChoBmgJaA9DCBE5fT0fOnFAlIaUUpRoFU1VAWgWR0CRWijLSuyNdX2UKGgGaAloD0MIQx8sYwO1cUCUhpRSlGgVTVIBaBZHQJFaPVpblil1fZQoaAZoCWgPQwi1Gach6l5xQJSGlFKUaBVNIAFoFkdAkVp0Es8PnXV9lChoBmgJaA9DCFUUr7J22XJAlIaUUpRoFU0RAWgWR0CRW0cJdB0IdX2UKGgGaAloD0MINQcI5uhRb0CUhpRSlGgVS/xoFkdAkVzsk2P1c3V9lChoBmgJaA9DCJUtknZjEHFAlIaUUpRoFU13AWgWR0CRXcD4QBgedX2UKGgGaAloD0MIfVuwVJcJbkCUhpRSlGgVTRQBaBZHQJFd1BVuJk51fZQoaAZoCWgPQwjb+BOVDR9uQJSGlFKUaBVNWwFoFkdAkV3iMHbAUXV9lChoBmgJaA9DCAMixJWzy25AlIaUUpRoFU0xAWgWR0CRXhsvIwM6dX2UKGgGaAloD0MIU3b6QR1XckCUhpRSlGgVTREBaBZHQJFe0MAmzB11fZQoaAZoCWgPQwhZNnNIauluQJSGlFKUaBVNGwFoFkdAkV7N4zJp4HV9lChoBmgJaA9DCPexgt8GvG1AlIaUUpRoFU0xAWgWR0CRX3OLiuMddX2UKGgGaAloD0MI19081eFgc0CUhpRSlGgVTRsBaBZHQJFfkHfMwDh1fZQoaAZoCWgPQwhqa0QwzmVwQJSGlFKUaBVNOAFoFkdAkV+wlfJFLHV9lChoBmgJaA9DCO+rcqEyp3BAlIaUUpRoFUvxaBZHQJFhR9YwIt11fZQoaAZoCWgPQwjzHmeaMLhvQJSGlFKUaBVNFwFoFkdAkWFfcnE2pHV9lChoBmgJaA9DCPylRX3S/XBAlIaUUpRoFU0eAWgWR0CRYfakAPupdX2UKGgGaAloD0MIyNKHLihscECUhpRSlGgVTSgBaBZHQJFi5PUKArh1fZQoaAZoCWgPQwjwaU5eZA5zQJSGlFKUaBVNUAFoFkdAkWRSOq//N3V9lChoBmgJaA9DCF02OudnHnJAlIaUUpRoFU1HAWgWR0CRZP8ZUDMedX2UKGgGaAloD0MImu0KfXCDcECUhpRSlGgVTSIBaBZHQJFlY+Pikwh1fZQoaAZoCWgPQwhZwW9DjKxuQJSGlFKUaBVNCAFoFkdAkWWNgKF7D3V9lChoBmgJaA9DCOl/uRat/3FAlIaUUpRoFU0XAWgWR0CRZbhYeT3ZdX2UKGgGaAloD0MIjln2JDB/ckCUhpRSlGgVTS4BaBZHQJFmbCoCMgl1fZQoaAZoCWgPQwiSO2wisx9yQJSGlFKUaBVNOAFoFkdAkWbASnLq2XV9lChoBmgJaA9DCJyKVBibTXFAlIaUUpRoFU0hAWgWR0CRZvVBlcyFdX2UKGgGaAloD0MIFR3J5X8QckCUhpRSlGgVTQkBaBZHQJFnAYTCcgB1fZQoaAZoCWgPQwilhGBV/a9xQJSGlFKUaBVNMAFoFkdAkWdbUb1h9nV9lChoBmgJaA9DCAjkEkceeHBAlIaUUpRoFU0sAWgWR0CRaBsd1dPddX2UKGgGaAloD0MI/OQoQJSfckCUhpRSlGgVTU8BaBZHQJFo2H1vl2h1fZQoaAZoCWgPQwiezhWlhBJyQJSGlFKUaBVNLgFoFkdAkWnRFZxJd3V9lChoBmgJaA9DCFuwVBcwzXFAlIaUUpRoFU03AWgWR0CRaflGPPszdX2UKGgGaAloD0MIt3njpLAtckCUhpRSlGgVTR4BaBZHQJFq4Mw1zhh1fZQoaAZoCWgPQwjrAl5m2EpyQJSGlFKUaBVNSwFoFkdAkWs3EZR8+nV9lChoBmgJaA9DCLJJfsQv43JAlIaUUpRoFU0cAWgWR0CRbX6jnFHbdX2UKGgGaAloD0MId4cUA6TLbkCUhpRSlGgVTScBaBZHQJFtrrVvuPV1fZQoaAZoCWgPQwiHw9LAT+twQJSGlFKUaBVNSQFoFkdAkW20pmVZ93V9lChoBmgJaA9DCD+p9um4K3JAlIaUUpRoFU0iAWgWR0CRbd/H5rP/dX2UKGgGaAloD0MI5GVNLPA1bUCUhpRSlGgVTUsBaBZHQJGBoi+tbLV1fZQoaAZoCWgPQwgF3V7S2CRyQJSGlFKUaBVNHQFoFkdAkYGsTN+so3V9lChoBmgJaA9DCNxGA3iLN3JAlIaUUpRoFU0TAWgWR0CRgek5IYm+dX2UKGgGaAloD0MIYOl8eNbucECUhpRSlGgVTSABaBZHQJGCDNOdoWZ1fZQoaAZoCWgPQwjuX1lp0sBrQJSGlFKUaBVNKwFoFkdAkYKF7pmmL3V9lChoBmgJaA9DCIY3a/A+ZHBAlIaUUpRoFU0gAWgWR0CRgpjhky1vdX2UKGgGaAloD0MI22lrRDDycECUhpRSlGgVTSABaBZHQJGDUfeUILR1fZQoaAZoCWgPQwghc2VQLXVwQJSGlFKUaBVNIwFoFkdAkYQb7XQMQXV9lChoBmgJaA9DCOhpwCCpfHFAlIaUUpRoFU0GAWgWR0CRhG8tf5UMdX2UKGgGaAloD0MIlnfVA6ZNcECUhpRSlGgVTQABaBZHQJGFGd07r9l1fZQoaAZoCWgPQwhfQgWHlxNwQJSGlFKUaBVL+2gWR0CRhUzUI9kjdX2UKGgGaAloD0MIX3tmSUBbcECUhpRSlGgVTT4BaBZHQJGFu/47A+J1fZQoaAZoCWgPQwio/Gt5JaFxQJSGlFKUaBVNCAFoFkdAkYgcwlByCHV9lChoBmgJaA9DCODYs+eyXm9AlIaUUpRoFUv7aBZHQJGIR9tuUEB1fZQoaAZoCWgPQwgjnuxmRitxQJSGlFKUaBVNFQFoFkdAkYhcXSBsh3V9lChoBmgJaA9DCIejq3R3229AlIaUUpRoFU0DAWgWR0CRiNO/L1VYdX2UKGgGaAloD0MIWkkrvqGhcECUhpRSlGgVTQMBaBZHQJGI/fKp1ih1fZQoaAZoCWgPQwiiDFUx1WdyQJSGlFKUaBVNMQFoFkdAkYkA+IMz/XV9lChoBmgJaA9DCLa+SGgLVXFAlIaUUpRoFU0yAWgWR0CRiS7CSA6NdX2UKGgGaAloD0MILqwb704ucUCUhpRSlGgVTQ0BaBZHQJGJwM9bHIZ1fZQoaAZoCWgPQwjGhQMhWdBxQJSGlFKUaBVNPQFoFkdAkYoXa37UG3V9lChoBmgJaA9DCIoFvqLbgW9AlIaUUpRoFU0pAWgWR0CRio3Sa3I/dX2UKGgGaAloD0MIlQ7W/7mob0CUhpRSlGgVS/ZoFkdAkYs9QCSzPnV9lChoBmgJaA9DCC5Yqgv4nW1AlIaUUpRoFU0kAWgWR0CRiz53C9AYdX2UKGgGaAloD0MIjnbc8DtMc0CUhpRSlGgVTQYBaBZHQJGLUPFvQ4V1fZQoaAZoCWgPQwgejUP97kFwQJSGlFKUaBVNBQFoFkdAkYxdnGsFMnV9lChoBmgJaA9DCMct5udGK3FAlIaUUpRoFU0UAWgWR0CRjIwkxASndX2UKGgGaAloD0MIhZZ1/1irbkCUhpRSlGgVS/5oFkdAkYyUhmoR7XV9lChoBmgJaA9DCM6JPbSPQHBAlIaUUpRoFU0PAWgWR0CRjy7g88s+dX2UKGgGaAloD0MIXOMz2f/JcUCUhpRSlGgVTQcBaBZHQJGP2+TNdJJ1fZQoaAZoCWgPQwhj00oh0EFyQJSGlFKUaBVNCgFoFkdAkZApIg/1QXV9lChoBmgJaA9DCM0GmWSkk3BAlIaUUpRoFU0qAWgWR0CRkPGG21D0dX2UKGgGaAloD0MIMGZLVgW9cECUhpRSlGgVTU0BaBZHQJGRXfJmukl1fZQoaAZoCWgPQwh3+GuyBqBxQJSGlFKUaBVNRAFoFkdAkZGTsMRYinV9lChoBmgJaA9DCJaX/E/+XnJAlIaUUpRoFU0oAWgWR0CRkdAzpHI7dX2UKGgGaAloD0MIf05BfrZIcUCUhpRSlGgVTSEBaBZHQJGR/cWTHKh1fZQoaAZoCWgPQwhXk6es5iNyQJSGlFKUaBVNBwFoFkdAkZJyJXQtz3V9lChoBmgJaA9DCFhXBWrxgHFAlIaUUpRoFU0mAWgWR0CRk2K3uuzQdX2UKGgGaAloD0MIG9gqwaLGckCUhpRSlGgVTTYBaBZHQJGT7/DLr5Z1fZQoaAZoCWgPQwhrniPy3X1vQJSGlFKUaBVNBwFoFkdAkZPsh9srNHV9lChoBmgJaA9DCJs90ArMsXBAlIaUUpRoFU0nAWgWR0CRlR5d4VyndX2UKGgGaAloD0MITdu/stJtcUCUhpRSlGgVTS8BaBZHQJGVTIHTqjd1fZQoaAZoCWgPQwieXinLkMZtQJSGlFKUaBVNjgFoFkdAkZWiprDZUXV9lChoBmgJaA9DCArWOJtOYnFAlIaUUpRoFU0GAWgWR0CRl9Qsf7rLdX2UKGgGaAloD0MITzxnC0iAcUCUhpRSlGgVTR8BaBZHQJGYUYj0L+h1fZQoaAZoCWgPQwiSsdr8f7dxQJSGlFKUaBVNBAFoFkdAkZiOogmqpHV9lChoBmgJaA9DCCSBBps6PXBAlIaUUpRoFU1VAWgWR0CRmVbH6uW9dX2UKGgGaAloD0MIGePD7CUycUCUhpRSlGgVTR4BaBZHQJGZyOq//Nt1fZQoaAZoCWgPQwg4h2u1h1VoQJSGlFKUaBVNdgJoFkdAkZoKoqCpWHV9lChoBmgJaA9DCAclzLT9GnFAlIaUUpRoFU0JAWgWR0CRmkY0l7dBdX2UKGgGaAloD0MId9hEZm4BckCUhpRSlGgVTSgBaBZHQJGapTo+wC91fZQoaAZoCWgPQwjBOo4f6i9xQJSGlFKUaBVNIgFoFkdAkZvk1VHWjHV9lChoBmgJaA9DCNlbyvnianJAlIaUUpRoFU1qAWgWR0CRnDMJx//edX2UKGgGaAloD0MILAyR01ekb0CUhpRSlGgVTQgBaBZHQJGdbJaJQ+F1ZS4="
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 248,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:68aeddc3406b7616a26d91f0782f8a85224eb6b725cc15f86dccef336db281b9
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:40cf49a50ea51628d1c68f9b89330b167944887c8247856f2b65567d4436f5c2
3
+ size 43393
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (194 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 253.6562816424711, "std_reward": 29.80954557779779, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-18T05:50:39.793619"}