Evan-Lin commited on
Commit
c83ec8c
1 Parent(s): 6dc4f77

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +82 -0
README.md ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: bsd-3-clause
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - accuracy
7
+ model-index:
8
+ - name: trainer
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # trainer
16
+
17
+ This model is a fine-tuned version of [MIT/ast-finetuned-audioset-10-10-0.4593](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593) on an unknown dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.3684
20
+ - Accuracy: 0.9275
21
+
22
+ ## Model description
23
+
24
+ More information needed
25
+
26
+ ## Intended uses & limitations
27
+
28
+ More information needed
29
+
30
+ ## Training and evaluation data
31
+
32
+ More information needed
33
+
34
+ ## Training procedure
35
+
36
+ ### Training hyperparameters
37
+
38
+ The following hyperparameters were used during training:
39
+ - learning_rate: 0.0001
40
+ - train_batch_size: 8
41
+ - eval_batch_size: 8
42
+ - seed: 42
43
+ - gradient_accumulation_steps: 8
44
+ - total_train_batch_size: 64
45
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
46
+ - lr_scheduler_type: linear
47
+ - lr_scheduler_warmup_steps: 50
48
+ - training_steps: 1000
49
+ - mixed_precision_training: Native AMP
50
+
51
+ ### Training results
52
+
53
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
54
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
55
+ | 4.2624 | 2.0 | 50 | 0.3928 | 0.88 |
56
+ | 0.9069 | 4.0 | 100 | 0.3259 | 0.9025 |
57
+ | 0.9069 | 6.0 | 150 | 0.2775 | 0.93 |
58
+ | 0.0567 | 8.0 | 200 | 0.3220 | 0.9075 |
59
+ | 0.0567 | 10.0 | 250 | 0.3196 | 0.9075 |
60
+ | 0.0109 | 12.0 | 300 | 0.3644 | 0.9175 |
61
+ | 0.0109 | 14.0 | 350 | 0.3501 | 0.93 |
62
+ | 0.0138 | 16.0 | 400 | 0.3569 | 0.9275 |
63
+ | 0.0138 | 18.0 | 450 | 0.3700 | 0.9225 |
64
+ | 0.0006 | 20.0 | 500 | 0.3662 | 0.925 |
65
+ | 0.0006 | 22.0 | 550 | 0.3669 | 0.925 |
66
+ | 0.0002 | 24.0 | 600 | 0.3673 | 0.925 |
67
+ | 0.0002 | 26.0 | 650 | 0.3677 | 0.925 |
68
+ | 0.0002 | 28.0 | 700 | 0.3679 | 0.9275 |
69
+ | 0.0002 | 30.0 | 750 | 0.3680 | 0.9275 |
70
+ | 0.0002 | 32.0 | 800 | 0.3681 | 0.9275 |
71
+ | 0.0002 | 34.0 | 850 | 0.3684 | 0.9275 |
72
+ | 0.0002 | 36.0 | 900 | 0.3683 | 0.9275 |
73
+ | 0.0002 | 38.0 | 950 | 0.3684 | 0.9275 |
74
+ | 0.0002 | 40.0 | 1000 | 0.3684 | 0.9275 |
75
+
76
+
77
+ ### Framework versions
78
+
79
+ - Transformers 4.27.1
80
+ - Pytorch 2.0.1+cu117
81
+ - Datasets 2.13.1
82
+ - Tokenizers 0.13.3