update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: bsd-3-clause
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- accuracy
|
7 |
+
model-index:
|
8 |
+
- name: trainer
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# trainer
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [MIT/ast-finetuned-audioset-10-10-0.4593](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593) on an unknown dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.3684
|
20 |
+
- Accuracy: 0.9275
|
21 |
+
|
22 |
+
## Model description
|
23 |
+
|
24 |
+
More information needed
|
25 |
+
|
26 |
+
## Intended uses & limitations
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Training and evaluation data
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training procedure
|
35 |
+
|
36 |
+
### Training hyperparameters
|
37 |
+
|
38 |
+
The following hyperparameters were used during training:
|
39 |
+
- learning_rate: 0.0001
|
40 |
+
- train_batch_size: 8
|
41 |
+
- eval_batch_size: 8
|
42 |
+
- seed: 42
|
43 |
+
- gradient_accumulation_steps: 8
|
44 |
+
- total_train_batch_size: 64
|
45 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
46 |
+
- lr_scheduler_type: linear
|
47 |
+
- lr_scheduler_warmup_steps: 50
|
48 |
+
- training_steps: 1000
|
49 |
+
- mixed_precision_training: Native AMP
|
50 |
+
|
51 |
+
### Training results
|
52 |
+
|
53 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
54 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
55 |
+
| 4.2624 | 2.0 | 50 | 0.3928 | 0.88 |
|
56 |
+
| 0.9069 | 4.0 | 100 | 0.3259 | 0.9025 |
|
57 |
+
| 0.9069 | 6.0 | 150 | 0.2775 | 0.93 |
|
58 |
+
| 0.0567 | 8.0 | 200 | 0.3220 | 0.9075 |
|
59 |
+
| 0.0567 | 10.0 | 250 | 0.3196 | 0.9075 |
|
60 |
+
| 0.0109 | 12.0 | 300 | 0.3644 | 0.9175 |
|
61 |
+
| 0.0109 | 14.0 | 350 | 0.3501 | 0.93 |
|
62 |
+
| 0.0138 | 16.0 | 400 | 0.3569 | 0.9275 |
|
63 |
+
| 0.0138 | 18.0 | 450 | 0.3700 | 0.9225 |
|
64 |
+
| 0.0006 | 20.0 | 500 | 0.3662 | 0.925 |
|
65 |
+
| 0.0006 | 22.0 | 550 | 0.3669 | 0.925 |
|
66 |
+
| 0.0002 | 24.0 | 600 | 0.3673 | 0.925 |
|
67 |
+
| 0.0002 | 26.0 | 650 | 0.3677 | 0.925 |
|
68 |
+
| 0.0002 | 28.0 | 700 | 0.3679 | 0.9275 |
|
69 |
+
| 0.0002 | 30.0 | 750 | 0.3680 | 0.9275 |
|
70 |
+
| 0.0002 | 32.0 | 800 | 0.3681 | 0.9275 |
|
71 |
+
| 0.0002 | 34.0 | 850 | 0.3684 | 0.9275 |
|
72 |
+
| 0.0002 | 36.0 | 900 | 0.3683 | 0.9275 |
|
73 |
+
| 0.0002 | 38.0 | 950 | 0.3684 | 0.9275 |
|
74 |
+
| 0.0002 | 40.0 | 1000 | 0.3684 | 0.9275 |
|
75 |
+
|
76 |
+
|
77 |
+
### Framework versions
|
78 |
+
|
79 |
+
- Transformers 4.27.1
|
80 |
+
- Pytorch 2.0.1+cu117
|
81 |
+
- Datasets 2.13.1
|
82 |
+
- Tokenizers 0.13.3
|