Image Segmentation
medical
biology
josedvq commited on
Commit
5521c8a
1 Parent(s): 8125b6e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +35 -35
README.md CHANGED
@@ -1,35 +1,35 @@
1
- ---
2
- license: agpl-3.0
3
- pipeline_tag: image-segmentation
4
- tags:
5
- - medical
6
- - biology
7
- ---
8
-
9
- ## VascX models
10
-
11
- This repository contains the instructions for using the VascX models from the paper [VascX Models: Model Ensembles for Retinal Vascular Analysis from Color Fundus Images](https://arxiv.org/abs/2409.16016).
12
-
13
- The model weights are in [huggingface](https://huggingface.co/Eyened/vascx).
14
-
15
- <img src="imgs/CHASEDB1_12R_rgb.png" width="240" height="240"><img src="imgs/CHASEDB1_12R.png" width="240" height="240">
16
-
17
- <img src="imgs/DRIVE_22_rgb.png" width="240" height="240"><img src="imgs/DRIVE_22.png" width="240" height="240">
18
-
19
- <img src="imgs/HRF_04_g_rgb.png" width="240" height="240"><img src="imgs/HRF_04_g.png" width="240" height="240">
20
-
21
- ### Installation
22
-
23
- To install the entire fundus analysis pipeline including fundus preprocessing, model inference code and vascular biomarker extraction:
24
-
25
- 1. Create a conda or virtualenv virtual environment, or otherwise ensure a clean environment.
26
-
27
- 2. Install the [rtnls_inference package](https://github.com/Eyened/retinalysis-inference).
28
-
29
- ### Usage
30
-
31
- To speed up re-execution of vascx we recommend to run the preprocessing and segmentation steps separately:
32
-
33
- 1. Preprocessing. See [this notebook](./notebooks/0_preprocess.ipynb). This step is CPU-heavy and benefits from parallelization (see notebook).
34
-
35
- 2. Inference. See [this notebook](./notebooks/1_segment_preprocessed.ipynb). All models can be ran in a single GPU with >10GB VRAM.
 
1
+ ---
2
+ license: agpl-3.0
3
+ pipeline_tag: image-segmentation
4
+ tags:
5
+ - medical
6
+ - biology
7
+ ---
8
+
9
+ ## VascX models
10
+
11
+ This repository contains the instructions for using the VascX models from the paper [VascX Models: Model Ensembles for Retinal Vascular Analysis from Color Fundus Images](https://arxiv.org/abs/2409.16016).
12
+
13
+ The model weights are in [huggingface](https://huggingface.co/Eyened/vascx).
14
+
15
+ <img src="imgs/CHASEDB1_12R_rgb.png" width="240" height="240" style="display:inline"><img src="imgs/CHASEDB1_12R.png" width="240" height="240" style="display:inline">
16
+
17
+ <img src="imgs/DRIVE_22_rgb.png" width="240" height="240" style="display:inline"><img src="imgs/DRIVE_22.png" width="240" height="240" style="display:inline">
18
+
19
+ <img src="imgs/HRF_04_g_rgb.png" width="240" height="240" style="display:inline"><img src="imgs/HRF_04_g.png" width="240" height="240" style="display:inline">
20
+
21
+ ### Installation
22
+
23
+ To install the entire fundus analysis pipeline including fundus preprocessing, model inference code and vascular biomarker extraction:
24
+
25
+ 1. Create a conda or virtualenv virtual environment, or otherwise ensure a clean environment.
26
+
27
+ 2. Install the [rtnls_inference package](https://github.com/Eyened/retinalysis-inference).
28
+
29
+ ### Usage
30
+
31
+ To speed up re-execution of vascx we recommend to run the preprocessing and segmentation steps separately:
32
+
33
+ 1. Preprocessing. See [this notebook](./notebooks/0_preprocess.ipynb). This step is CPU-heavy and benefits from parallelization (see notebook).
34
+
35
+ 2. Inference. See [this notebook](./notebooks/1_segment_preprocessed.ipynb). All models can be ran in a single GPU with >10GB VRAM.