Update README.md
Browse files
README.md
CHANGED
@@ -1,35 +1,35 @@
|
|
1 |
-
---
|
2 |
-
license: agpl-3.0
|
3 |
-
pipeline_tag: image-segmentation
|
4 |
-
tags:
|
5 |
-
- medical
|
6 |
-
- biology
|
7 |
-
---
|
8 |
-
|
9 |
-
## VascX models
|
10 |
-
|
11 |
-
This repository contains the instructions for using the VascX models from the paper [VascX Models: Model Ensembles for Retinal Vascular Analysis from Color Fundus Images](https://arxiv.org/abs/2409.16016).
|
12 |
-
|
13 |
-
The model weights are in [huggingface](https://huggingface.co/Eyened/vascx).
|
14 |
-
|
15 |
-
<img src="imgs/CHASEDB1_12R_rgb.png" width="240" height="240"><img src="imgs/CHASEDB1_12R.png" width="240" height="240">
|
16 |
-
|
17 |
-
<img src="imgs/DRIVE_22_rgb.png" width="240" height="240"><img src="imgs/DRIVE_22.png" width="240" height="240">
|
18 |
-
|
19 |
-
<img src="imgs/HRF_04_g_rgb.png" width="240" height="240"><img src="imgs/HRF_04_g.png" width="240" height="240">
|
20 |
-
|
21 |
-
### Installation
|
22 |
-
|
23 |
-
To install the entire fundus analysis pipeline including fundus preprocessing, model inference code and vascular biomarker extraction:
|
24 |
-
|
25 |
-
1. Create a conda or virtualenv virtual environment, or otherwise ensure a clean environment.
|
26 |
-
|
27 |
-
2. Install the [rtnls_inference package](https://github.com/Eyened/retinalysis-inference).
|
28 |
-
|
29 |
-
### Usage
|
30 |
-
|
31 |
-
To speed up re-execution of vascx we recommend to run the preprocessing and segmentation steps separately:
|
32 |
-
|
33 |
-
1. Preprocessing. See [this notebook](./notebooks/0_preprocess.ipynb). This step is CPU-heavy and benefits from parallelization (see notebook).
|
34 |
-
|
35 |
-
2. Inference. See [this notebook](./notebooks/1_segment_preprocessed.ipynb). All models can be ran in a single GPU with >10GB VRAM.
|
|
|
1 |
+
---
|
2 |
+
license: agpl-3.0
|
3 |
+
pipeline_tag: image-segmentation
|
4 |
+
tags:
|
5 |
+
- medical
|
6 |
+
- biology
|
7 |
+
---
|
8 |
+
|
9 |
+
## VascX models
|
10 |
+
|
11 |
+
This repository contains the instructions for using the VascX models from the paper [VascX Models: Model Ensembles for Retinal Vascular Analysis from Color Fundus Images](https://arxiv.org/abs/2409.16016).
|
12 |
+
|
13 |
+
The model weights are in [huggingface](https://huggingface.co/Eyened/vascx).
|
14 |
+
|
15 |
+
<img src="imgs/CHASEDB1_12R_rgb.png" width="240" height="240" style="display:inline"><img src="imgs/CHASEDB1_12R.png" width="240" height="240" style="display:inline">
|
16 |
+
|
17 |
+
<img src="imgs/DRIVE_22_rgb.png" width="240" height="240" style="display:inline"><img src="imgs/DRIVE_22.png" width="240" height="240" style="display:inline">
|
18 |
+
|
19 |
+
<img src="imgs/HRF_04_g_rgb.png" width="240" height="240" style="display:inline"><img src="imgs/HRF_04_g.png" width="240" height="240" style="display:inline">
|
20 |
+
|
21 |
+
### Installation
|
22 |
+
|
23 |
+
To install the entire fundus analysis pipeline including fundus preprocessing, model inference code and vascular biomarker extraction:
|
24 |
+
|
25 |
+
1. Create a conda or virtualenv virtual environment, or otherwise ensure a clean environment.
|
26 |
+
|
27 |
+
2. Install the [rtnls_inference package](https://github.com/Eyened/retinalysis-inference).
|
28 |
+
|
29 |
+
### Usage
|
30 |
+
|
31 |
+
To speed up re-execution of vascx we recommend to run the preprocessing and segmentation steps separately:
|
32 |
+
|
33 |
+
1. Preprocessing. See [this notebook](./notebooks/0_preprocess.ipynb). This step is CPU-heavy and benefits from parallelization (see notebook).
|
34 |
+
|
35 |
+
2. Inference. See [this notebook](./notebooks/1_segment_preprocessed.ipynb). All models can be ran in a single GPU with >10GB VRAM.
|