BSavoldi commited on
Commit
a5df191
1 Parent(s): 4d2cfa4

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +4 -3
README.md CHANGED
@@ -23,7 +23,9 @@ tokenizer = AutoTokenizer.from_pretrained("Musixmatch/umberto-wikipedia-uncased-
23
  model = AutoModelForSequenceClassification.from_pretrained("FBK-MT/GeNTE-evaluator")
24
 
25
  # neutral example
26
- sample = "Condividiamo il parere di chi ha presentato la relazione che ha posto notevole enfasi sull'informazione in relazione ai rischi e sulla trasparenza, in particolare nel campo sanitario e della sicurezza."
 
 
27
  input = tokenizer(sample, return_tensors='pt')
28
 
29
  with torch.no_grad():
@@ -54,8 +56,7 @@ print(predicted_label) # 0 is neutral, 1 is gendered
54
  url = "https://aclanthology.org/2023.emnlp-main.873",
55
  doi = "10.18653/v1/2023.emnlp-main.873",
56
  pages = "14124--14140",
57
- abstract = "Gender inequality is embedded in our communication practices and perpetuated in translation technologies. This becomes particularly apparent when translating into grammatical gender languages, where machine translation (MT) often defaults to masculine and stereotypical representations by making undue binary gender assumptions. Our work addresses the rising demand for inclusive language by focusing head-on on gender-neutral translation from English to Italian. We start from the essentials: proposing a dedicated benchmark and exploring automated evaluation methods. First, we introduce GeNTE, a natural, bilingual test set for gender-neutral translation, whose creation was informed by a survey on the perception and use of neutral language. Based on GeNTE, we then overview existing reference-based evaluation approaches, highlight their limits, and propose a reference-free method more suitable to assess gender-neutral translation.",
58
- }
59
  ```
60
 
61
  ## Contributions
 
23
  model = AutoModelForSequenceClassification.from_pretrained("FBK-MT/GeNTE-evaluator")
24
 
25
  # neutral example
26
+ sample = "Condividiamo il parere di chi ha presentato la relazione
27
+ che ha posto notevole enfasi sull'informazione in relazione ai rischi e sulla trasparenza,
28
+ in particolare nel campo sanitario e della sicurezza."
29
  input = tokenizer(sample, return_tensors='pt')
30
 
31
  with torch.no_grad():
 
56
  url = "https://aclanthology.org/2023.emnlp-main.873",
57
  doi = "10.18653/v1/2023.emnlp-main.873",
58
  pages = "14124--14140",
59
+ }
 
60
  ```
61
 
62
  ## Contributions