--- license: cc-by-4.0 language: - it --- # GeNTE Evaluator The **Gender-Neutral Translation (GeNTE) Evaluator** is a sequence classification model used for evaluating inclusive translations into Italian for the [GeNTE corpus](https://huggingface.co/datasets/FBK-MT/GeNTE). It is built by fine-tuning the RoBERTa-based [UmBERTo model](https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1). More details on the training process and the reproducibility can be found in the [official repository](https://github.com/hlt-mt/fbk-NEUTR-evAL/blob/main/solutions/GeNTE.md) ad the [paper](https://aclanthology.org/2023.emnlp-main.873/). ## Usage You can use the GeNTE Evaluator as follows: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer # load the tokenizer of UmBERTo tokenizer = AutoTokenizer.from_pretrained("Musixmatch/umberto-wikipedia-uncased-v1", do_lower_case=False) # load GeNTE Evaluator model = AutoModelForSequenceClassification.from_pretrained("FBK-MT/GeNTE-evaluator") # neutral example sample = "Condividiamo il parere di chi ha presentato la relazione che ha posto notevole enfasi sull'informazione in relazione ai rischi e sulla trasparenza, in particolare nel campo sanitario e della sicurezza." input = tokenizer(sample, return_tensors='pt') with torch.no_grad(): probs = model(**input).logits predicted_label = torch.argmax(probs, dim=1).item() print(predicted_label) # 0 is neutral, 1 is gendered ``` ## Citation ``` @inproceedings{piergentili-etal-2023-hi, title = "Hi Guys or Hi Folks? Benchmarking Gender-Neutral Machine Translation with the {G}e{NTE} Corpus", author = "Piergentili, Andrea and Savoldi, Beatrice and Fucci, Dennis and Negri, Matteo and Bentivogli, Luisa", editor = "Bouamor, Houda and Pino, Juan and Bali, Kalika", booktitle = "Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing", month = dec, year = "2023", address = "Singapore", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2023.emnlp-main.873", doi = "10.18653/v1/2023.emnlp-main.873", pages = "14124--14140", } ``` ## Contributions Thanks to [@dfucci](https://huggingface.co/dfucci) for adding this model.