File size: 16,120 Bytes
4479d6a e1d8f96 4479d6a ea857b2 e1d8f96 c3aee77 ea857b2 e1d8f96 ea857b2 e1d8f96 c3aee77 e1d8f96 c3aee77 e1d8f96 c3aee77 e1d8f96 c3aee77 e1d8f96 c3aee77 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 |
---
license: creativeml-openrail-m
language:
- en
tags:
- di.ffusion.ai
- stable-diffusion
- LyCORIS
- LoRA
---
# Model Card for di.FFUSION.ai Text Encoder - SD 2.1 LyCORIS
![image.png](https://cdn-uploads.huggingface.co/production/uploads/6380cf05f496d57325c12194/zcw9AUCSbanb61xe6pIUc.png)
<!-- Provide a quick summary of what the model is/does. [Optional] -->
di.FFUSION.ai-tXe-FXAA
Trained on "121361" images.
- **DOWNLOAD:** https://huggingface.co/FFusion/FFUSION.ai-Text-Encoder-LyCORIS-SD-2.1/blob/main/di.FFUSION.ai-tXe-FXAA.safetensors
Enhance your model's quality and sharpness using your own pre-trained Unet.
The text encoder (without UNET) is wrapped in LyCORIS. Optimizer: torch.optim.adamw.AdamW(weight_decay=0.01, betas=(0.9, 0.99))
Network dimension/rank: 768.0 Alpha: 768.0 Module: lycoris.kohya {'conv_dim': '256', 'conv_alpha': '256', 'algo': 'loha'}
Large size due to Lyco CONV 256
![image.png](https://cdn-uploads.huggingface.co/production/uploads/6380cf05f496d57325c12194/Ig1IOYZAyUrhpWIhdC6U-.png)
![image.png](https://cdn-uploads.huggingface.co/production/uploads/6380cf05f496d57325c12194/66eAHPc501sbQx35-B0Oo.png)
This is a heavy experimental version we used to test even with sloppy captions (quick WD tags and terrible clip), yet the results were satisfying.
Note: This is not the text encoder used in the official FFUSION AI model.
# SAMPLES
**Available also at https://civitai.com/models/83622**
![image.png](https://cdn-uploads.huggingface.co/production/uploads/6380cf05f496d57325c12194/agjJ--YR_k_Pbn8tOMsqr.png)
For a1111
Install https://github.com/KohakuBlueleaf/a1111-sd-webui-lycoris
Download di.FFUSION.ai-tXe-FXAA to /models/Lycoris
Option1:
Insert <lyco:di.FFUSION.ai-tXe-FXAA:1.0> to prompt
No need to split Unet and Text Enc as its only TX encoder there.
You can go up to 2x weights
Option2: If you need it always ON (ex run a batch from txt file) then you can go to settings / Quicksettings list
![image.png](https://cdn-uploads.huggingface.co/production/uploads/6380cf05f496d57325c12194/N6M4-9eIkvi3nn3koh1fA.png)
add sd_lyco
restart and you should have a drop-down now 🤟 🥃
![image.png](https://cdn-uploads.huggingface.co/production/uploads/6380cf05f496d57325c12194/e8ROXaN8jIaT9lu7tNRjD.png)
# Table of Contents
- [Model Card for di.FFUSION.ai Text Encoder - SD 2.1 LyCORIS](#model-card-for--model_id-)
- [Table of Contents](#table-of-contents)
- [Table of Contents](#table-of-contents-1)
- [Model Details](#model-details)
- [Model Description](#model-description)
- [Uses](#uses)
- [Direct Use](#direct-use)
- [Downstream Use [Optional]](#downstream-use-optional)
- [Out-of-Scope Use](#out-of-scope-use)
- [Bias, Risks, and Limitations](#bias-risks-and-limitations)
- [Recommendations](#recommendations)
- [Training Details](#training-details)
- [Training Data](#training-data)
- [Training Procedure](#training-procedure)
- [Preprocessing](#preprocessing)
- [Speeds, Sizes, Times](#speeds-sizes-times)
- [Evaluation](#evaluation)
- [Testing Data, Factors & Metrics](#testing-data-factors--metrics)
- [Testing Data](#testing-data)
- [Factors](#factors)
- [Metrics](#metrics)
- [Results](#results)
- [Model Examination](#model-examination)
- [Environmental Impact](#environmental-impact)
- [Technical Specifications [optional]](#technical-specifications-optional)
- [Model Architecture and Objective](#model-architecture-and-objective)
- [Compute Infrastructure](#compute-infrastructure)
- [Hardware](#hardware)
- [Software](#software)
- [Citation](#citation)
- [Glossary [optional]](#glossary-optional)
- [More Information [optional]](#more-information-optional)
- [Model Card Authors [optional]](#model-card-authors-optional)
- [Model Card Contact](#model-card-contact)
- [How to Get Started with the Model](#how-to-get-started-with-the-model)
# Model Details
## Model Description
<!-- Provide a longer summary of what this model is/does. -->
di.FFUSION.ai-tXe-FXAA
Trained on "121361" images.
Enhance your model's quality and sharpness using your own pre-trained Unet.
The text encoder (without UNET) is wrapped in LyCORIS. Optimizer: torch.optim.adamw.AdamW(weight_decay=0.01, betas=(0.9, 0.99))
Network dimension/rank: 768.0 Alpha: 768.0 Module: lycoris.kohya {'conv_dim': '256', 'conv_alpha': '256', 'algo': 'loha'}
Large size due to Lyco CONV 256
This is a heavy experimental version we used to test even with sloppy captions (quick WD tags and terrible clip), yet the results were satisfying.
Note: This is not the text encoder used in the official FFUSION AI model.
- **Developed by:** FFusion.ai
- **Shared by [Optional]:** idle stoev
- **Model type:** Language model
- **Language(s) (NLP):** en
- **License:** creativeml-openrail-m
- **Parent Model:** More information needed
- **Resources for more information:** More information needed
# Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
## Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
<!-- If the user enters content, print that. If not, but they enter a task in the list, use that. If neither, say "more info needed." -->
The text encoder (without UNET) is wrapped in LyCORIS. Optimizer: torch.optim.adamw.AdamW(weight_decay=0.01, betas=(0.9, 0.99))
Network dimension/rank: 768.0 Alpha: 768.0 Module: lycoris.kohya {'conv_dim': '256', 'conv_alpha': '256', 'algo': 'loha'}
Large size due to Lyco CONV 256
# Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups.
## Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
# Training Details
## Training Data
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
Trained on "121361" images.
ss_caption_tag_dropout_rate: "0.0",
ss_multires_noise_discount: "0.3",
ss_mixed_precision: "bf16",
ss_text_encoder_lr: "1e-07",
ss_keep_tokens: "3",
ss_network_args: "{"conv_dim": "256", "conv_alpha": "256", "algo": "loha"}",
ss_caption_dropout_rate: "0.02",
ss_flip_aug: "False",
ss_learning_rate: "2e-07",
ss_sd_model_name: "stabilityai/stable-diffusion-2-1-base",
ss_max_grad_norm: "1.0",
ss_num_epochs: "2",
ss_gradient_checkpointing: "False",
ss_face_crop_aug_range: "None",
ss_epoch: "2",
ss_num_train_images: "121361",
ss_color_aug: "False",
ss_gradient_accumulation_steps: "1",
ss_total_batch_size: "100",
ss_prior_loss_weight: "1.0",
ss_training_comment: "None",
ss_network_dim: "768",
ss_output_name: "FusionaMEGA1tX",
ss_max_bucket_reso: "1024",
ss_network_alpha: "768.0",
ss_steps: "2444",
ss_shuffle_caption: "True",
ss_training_finished_at: "1684158038.0763328",
ss_min_bucket_reso: "256",
ss_noise_offset: "0.09",
ss_enable_bucket: "True",
ss_batch_size_per_device: "20",
ss_max_train_steps: "2444",
ss_network_module: "lycoris.kohya",
## Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
### Preprocessing
"{"buckets": {"0": {"resolution": [192, 256], "count": 1}, "1": {"resolution": [192, 320], "count": 1}, "2": {"resolution": [256, 384], "count": 1}, "3": {"resolution": [256, 512], "count": 1}, "4": {"resolution": [384, 576], "count": 2}, "5": {"resolution": [384, 640], "count": 2}, "6": {"resolution": [384, 704], "count": 1}, "7": {"resolution": [384, 1088], "count": 15}, "8": {"resolution": [448, 448], "count": 5}, "9": {"resolution": [448, 576], "count": 1}, "10": {"resolution": [448, 640], "count": 1}, "11": {"resolution": [448, 768], "count": 1}, "12": {"resolution": [448, 832], "count": 1}, "13": {"resolution": [448, 1088], "count": 25}, "14": {"resolution": [448, 1216], "count": 1}, "15": {"resolution": [512, 640], "count": 2}, "16": {"resolution": [512, 768], "count": 10}, "17": {"resolution": [512, 832], "count": 3}, "18": {"resolution": [512, 896], "count": 1525}, "19": {"resolution": [512, 960], "count": 2}, "20": {"resolution": [512, 1024], "count": 665}, "21": {"resolution": [512, 1088], "count": 8}, "22": {"resolution": [576, 576], "count": 5}, "23": {"resolution": [576, 768], "count": 1}, "24": {"resolution": [576, 832], "count": 667}, "25": {"resolution": [576, 896], "count": 9601}, "26": {"resolution": [576, 960], "count": 872}, "27": {"resolution": [576, 1024], "count": 17}, "28": {"resolution": [640, 640], "count": 3}, "29": {"resolution": [640, 768], "count": 7}, "30": {"resolution": [640, 832], "count": 608}, "31": {"resolution": [640, 896], "count": 90}, "32": {"resolution": [704, 640], "count": 1}, "33": {"resolution": [704, 704], "count": 11}, "34": {"resolution": [704, 768], "count": 1}, "35": {"resolution": [704, 832], "count": 1}, "36": {"resolution": [768, 640], "count": 225}, "37": {"resolution": [768, 704], "count": 6}, "38": {"resolution": [768, 768], "count": 74442}, "39": {"resolution": [832, 576], "count": 23784}, "40": {"resolution": [832, 640], "count": 554}, "41": {"resolution": [896, 512], "count": 1235}, "42": {"resolution": [896, 576], "count": 50}, "43": {"resolution": [896, 640], "count": 88}, "44": {"resolution": [960, 512], "count": 165}, "45": {"resolution": [960, 576], "count": 5246}, "46": {"resolution": [1024, 448], "count": 5}, "47": {"resolution": [1024, 512], "count": 1187}, "48": {"resolution": [1024, 576], "count": 40}, "49": {"resolution": [1088, 384], "count": 70}, "50": {"resolution": [1088, 448], "count": 36}, "51": {"resolution": [1088, 512], "count": 3}, "52": {"resolution": [1216, 448], "count": 36}, "53": {"resolution": [1344, 320], "count": 29}, "54": {"resolution": [1536, 384], "count": 1}}, "mean_img_ar_error": 0.01693107810697896}",
### Speeds, Sizes, Times
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
ss_resolution: "(768, 768)",
ss_v2: "True",
ss_cache_latents: "False",
ss_unet_lr: "2e-07",
ss_num_reg_images: "0",
ss_max_token_length: "225",
ss_lr_scheduler: "linear",
ss_reg_dataset_dirs: "{}",
ss_lr_warmup_steps: "303",
ss_num_batches_per_epoch: "1222",
ss_lowram: "False",
ss_multires_noise_iterations: "None",
ss_optimizer: "torch.optim.adamw.AdamW(weight_decay=0.01,betas=(0.9, 0.99))",
# Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
## Testing Data, Factors & Metrics
### Testing Data
<!-- This should link to a Data Card if possible. -->
More information needed
### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
More information needed
### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
More information needed
## Results
More information needed
# Model Examination
More information needed
# Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** 8xA100
- **Hours used:** 64
- **Cloud Provider:** CoreWeave
- **Compute Region:** US Main
- **Carbon Emitted:** 6.72
# Technical Specifications [optional]
## Model Architecture and Objective
Enhance your model's quality and sharpness using your own pre-trained Unet.
## Compute Infrastructure
More information needed
### Hardware
8xA100
### Software
Fully trained only with Kohya S & Shih-Ying Yeh (Kohaku-BlueLeaf)
https://arxiv.org/abs/2108.06098
# Citation
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
More information needed
**APA:**
@misc{LyCORIS,
author = "Shih-Ying Yeh (Kohaku-BlueLeaf), Yu-Guan Hsieh, Zhidong Gao",
title = "LyCORIS - Lora beYond Conventional methods, Other Rank adaptation Implementations for Stable diffusion",
howpublished = "\url{https://github.com/KohakuBlueleaf/LyCORIS}",
month = "March",
year = "2023"
}
# Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
More information needed
# More Information [optional]
More information needed
# Model Card Authors [optional]
<!-- This section provides another layer of transparency and accountability. Whose views is this model card representing? How many voices were included in its construction? Etc. -->
idle stoev
# Model Card Contact
di@ffusion.ai
# How to Get Started with the Model
Use the code below to get started with the model.
<details>
<summary> Click to expand </summary>
For a1111
Install https://github.com/KohakuBlueleaf/a1111-sd-webui-lycoris
Download di.FFUSION.ai-tXe-FXAA to /models/Lycoris
Option1:
Insert <lyco:di.FFUSION.ai-tXe-FXAA:1.0> to prompt
No need to split Unet and Text Enc as its only TX encoder there.
You can go up to 2x weights
Option2: If you need it always ON (ex run a batch from txt file) then you can go to settings / Quicksettings list
add sd_lyco
restart and you should have a drop-down now 🤟 🥃
</details> |