FabianWillner commited on
Commit
b55b1cd
·
1 Parent(s): 4dc25e9

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +91 -0
README.md ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - wikiann
7
+ metrics:
8
+ - precision
9
+ - recall
10
+ - f1
11
+ - accuracy
12
+ model-index:
13
+ - name: distilbert-base-german-cased-finetuned-ner
14
+ results:
15
+ - task:
16
+ name: Token Classification
17
+ type: token-classification
18
+ dataset:
19
+ name: wikiann
20
+ type: wikiann
21
+ config: de
22
+ split: validation
23
+ args: de
24
+ metrics:
25
+ - name: Precision
26
+ type: precision
27
+ value: 0.8400889939511924
28
+ - name: Recall
29
+ type: recall
30
+ value: 0.8744391373570705
31
+ - name: F1
32
+ type: f1
33
+ value: 0.8569199673770433
34
+ - name: Accuracy
35
+ type: accuracy
36
+ value: 0.9548258089954094
37
+ ---
38
+
39
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
40
+ should probably proofread and complete it, then remove this comment. -->
41
+
42
+ # distilbert-base-german-cased-finetuned-ner
43
+
44
+ This model is a fine-tuned version of [distilbert-base-german-cased](https://huggingface.co/distilbert-base-german-cased) on the wikiann dataset.
45
+ It achieves the following results on the evaluation set:
46
+ - Loss: 0.1871
47
+ - Precision: 0.8401
48
+ - Recall: 0.8744
49
+ - F1: 0.8569
50
+ - Accuracy: 0.9548
51
+
52
+ ## Model description
53
+
54
+ More information needed
55
+
56
+ ## Intended uses & limitations
57
+
58
+ More information needed
59
+
60
+ ## Training and evaluation data
61
+
62
+ More information needed
63
+
64
+ ## Training procedure
65
+
66
+ ### Training hyperparameters
67
+
68
+ The following hyperparameters were used during training:
69
+ - learning_rate: 2e-05
70
+ - train_batch_size: 8
71
+ - eval_batch_size: 8
72
+ - seed: 42
73
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
74
+ - lr_scheduler_type: linear
75
+ - num_epochs: 3
76
+
77
+ ### Training results
78
+
79
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
80
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
81
+ | 0.1785 | 1.0 | 2500 | 0.1728 | 0.8134 | 0.8414 | 0.8271 | 0.9490 |
82
+ | 0.1252 | 2.0 | 5000 | 0.1743 | 0.8434 | 0.8659 | 0.8545 | 0.9545 |
83
+ | 0.0867 | 3.0 | 7500 | 0.1871 | 0.8401 | 0.8744 | 0.8569 | 0.9548 |
84
+
85
+
86
+ ### Framework versions
87
+
88
+ - Transformers 4.27.3
89
+ - Pytorch 2.0.0+cu118
90
+ - Datasets 2.10.1
91
+ - Tokenizers 0.13.2