Add model card
Browse files
README.md
ADDED
@@ -0,0 +1,208 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- multilingual
|
4 |
+
- en
|
5 |
+
- es
|
6 |
+
- fr
|
7 |
+
- de
|
8 |
+
- zh
|
9 |
+
- ru
|
10 |
+
- pt
|
11 |
+
- it
|
12 |
+
- ar
|
13 |
+
- ja
|
14 |
+
- id
|
15 |
+
- tr
|
16 |
+
- nl
|
17 |
+
- pl
|
18 |
+
- fa
|
19 |
+
- vi
|
20 |
+
- sv
|
21 |
+
- ko
|
22 |
+
- he
|
23 |
+
- ro
|
24 |
+
- no
|
25 |
+
- hi
|
26 |
+
- uk
|
27 |
+
- cs
|
28 |
+
- fi
|
29 |
+
- hu
|
30 |
+
- th
|
31 |
+
- da
|
32 |
+
- ca
|
33 |
+
- el
|
34 |
+
- bg
|
35 |
+
- sr
|
36 |
+
- ms
|
37 |
+
- bn
|
38 |
+
- hr
|
39 |
+
- sl
|
40 |
+
- az
|
41 |
+
- sk
|
42 |
+
- eo
|
43 |
+
- ta
|
44 |
+
- sh
|
45 |
+
- lt
|
46 |
+
- et
|
47 |
+
- ml
|
48 |
+
- la
|
49 |
+
- bs
|
50 |
+
- sq
|
51 |
+
- arz
|
52 |
+
- af
|
53 |
+
- ka
|
54 |
+
- mr
|
55 |
+
- eu
|
56 |
+
- tl
|
57 |
+
- ang
|
58 |
+
- gl
|
59 |
+
- nn
|
60 |
+
- ur
|
61 |
+
- kk
|
62 |
+
- be
|
63 |
+
- hy
|
64 |
+
- te
|
65 |
+
- lv
|
66 |
+
- mk
|
67 |
+
- als
|
68 |
+
- is
|
69 |
+
- wuu
|
70 |
+
- my
|
71 |
+
- sco
|
72 |
+
- mn
|
73 |
+
- ceb
|
74 |
+
- ast
|
75 |
+
- cy
|
76 |
+
- kn
|
77 |
+
- br
|
78 |
+
- an
|
79 |
+
- gu
|
80 |
+
- bar
|
81 |
+
- uz
|
82 |
+
- lb
|
83 |
+
- ne
|
84 |
+
- si
|
85 |
+
- war
|
86 |
+
- jv
|
87 |
+
- ga
|
88 |
+
- oc
|
89 |
+
- ku
|
90 |
+
- sw
|
91 |
+
- nds
|
92 |
+
- ckb
|
93 |
+
- ia
|
94 |
+
- yi
|
95 |
+
- fy
|
96 |
+
- scn
|
97 |
+
- gan
|
98 |
+
- tt
|
99 |
+
- am
|
100 |
+
license: cc-by-nc-4.0
|
101 |
+
---
|
102 |
+
|
103 |
+
# xlm-mlm-100-1280
|
104 |
+
|
105 |
+
# Table of Contents
|
106 |
+
|
107 |
+
1. [Model Details](#model-details)
|
108 |
+
2. [Uses](#uses)
|
109 |
+
3. [Bias, Risks, and Limitations](#bias-risks-and-limitations)
|
110 |
+
4. [Training](#training)
|
111 |
+
5. [Evaluation](#evaluation)
|
112 |
+
6. [Environmental Impact](#environmental-impact)
|
113 |
+
7. [Citation](#citation)
|
114 |
+
8. [Model Card Authors](#model-card-authors)
|
115 |
+
9. [How To Get Started With the Model](#how-to-get-started-with-the-model)
|
116 |
+
|
117 |
+
|
118 |
+
# Model Details
|
119 |
+
|
120 |
+
xlm-mlm-100-1280 is the XLM model, which was proposed in [Cross-lingual Language Model Pretraining](https://arxiv.org/abs/1901.07291) by Guillaume Lample and Alexis Conneau, trained on Wikipedia text in 100 languages. The model is a transformer pretrained using a masked language modeling (MLM) objective.
|
121 |
+
|
122 |
+
## Model Description
|
123 |
+
|
124 |
+
- **Developed by:** See [associated paper](https://arxiv.org/abs/1901.07291) and [GitHub Repo](https://github.com/facebookresearch/XLM)
|
125 |
+
- **Model type:** Language model
|
126 |
+
- **Language(s) (NLP):** 100 languages, see [GitHub Repo](https://github.com/facebookresearch/XLM#the-17-and-100-languages) for full list.
|
127 |
+
- **License:** CC-BY-NC-4.0
|
128 |
+
- **Related Models:** [xlm-mlm-17-1280](https://huggingface.co/xlm-mlm-17-1280)
|
129 |
+
- **Resources for more information:**
|
130 |
+
- [Associated paper](https://arxiv.org/abs/1901.07291)
|
131 |
+
- [GitHub Repo](https://github.com/facebookresearch/XLM#the-17-and-100-languages)
|
132 |
+
- [Hugging Face Multilingual Models for Inference docs](https://huggingface.co/docs/transformers/v4.20.1/en/multilingual#xlm-with-language-embeddings)
|
133 |
+
|
134 |
+
# Uses
|
135 |
+
|
136 |
+
## Direct Use
|
137 |
+
|
138 |
+
The model is a language model. The model can be used for masked language modeling.
|
139 |
+
|
140 |
+
## Downstream Use
|
141 |
+
|
142 |
+
To learn more about this task and potential downstream uses, see the Hugging Face [fill mask docs](https://huggingface.co/tasks/fill-mask) and the [Hugging Face Multilingual Models for Inference](https://huggingface.co/docs/transformers/v4.20.1/en/multilingual#xlm-with-language-embeddings) docs. Also see the [associated paper](https://arxiv.org/abs/1901.07291).
|
143 |
+
|
144 |
+
## Out-of-Scope Use
|
145 |
+
|
146 |
+
The model should not be used to intentionally create hostile or alienating environments for people.
|
147 |
+
|
148 |
+
# Bias, Risks, and Limitations
|
149 |
+
|
150 |
+
Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)).
|
151 |
+
|
152 |
+
## Recommendations
|
153 |
+
|
154 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model.
|
155 |
+
|
156 |
+
# Training
|
157 |
+
|
158 |
+
This model is the XLM model trained on Wikipedia text in 100 languages. The preprocessing included tokenization and byte-pair-encoding. See the [GitHub repo](https://github.com/facebookresearch/XLM#the-17-and-100-languages) and the [associated paper](https://arxiv.org/pdf/1911.02116.pdf) for further details on the training data and training procedure.
|
159 |
+
|
160 |
+
# Evaluation
|
161 |
+
|
162 |
+
## Testing Data, Factors & Metrics
|
163 |
+
|
164 |
+
The model developers evaluated the model on the XNLI cross-lingual classification task (see the [XNLI data card](https://huggingface.co/datasets/xnli) for more details on XNLI) using the metric of test accuracy. See the [GitHub Repo](https://arxiv.org/pdf/1911.02116.pdf) for further details on the testing data, factors and metrics.
|
165 |
+
|
166 |
+
## Results
|
167 |
+
|
168 |
+
For xlm-mlm-100-1280, the test accuracy on the XNLI cross-lingual classification task in English (en), Spanish (es), German (de), Arabic (ar), Chinese (zh) and Urdu (ur) are:
|
169 |
+
|
170 |
+
|Language| en | es | de | ar | zh | ur |
|
171 |
+
|:------:|:--:|:---:|:--:|:--:|:--:|:--:|
|
172 |
+
| |83.7|76.6 |73.6|67.4|71.7|62.9|
|
173 |
+
|
174 |
+
See the [GitHub repo](https://github.com/facebookresearch/XLM#ii-cross-lingual-language-model-pretraining-xlm) for further details.
|
175 |
+
|
176 |
+
# Environmental Impact
|
177 |
+
|
178 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
179 |
+
|
180 |
+
- **Hardware Type:** More information needed
|
181 |
+
- **Hours used:** More information needed
|
182 |
+
- **Cloud Provider:** More information needed
|
183 |
+
- **Compute Region:** More information needed
|
184 |
+
- **Carbon Emitted:** More information needed
|
185 |
+
|
186 |
+
# Citation
|
187 |
+
|
188 |
+
**BibTeX:**
|
189 |
+
|
190 |
+
```bibtex
|
191 |
+
@article{lample2019cross,
|
192 |
+
title={Cross-lingual language model pretraining},
|
193 |
+
author={Lample, Guillaume and Conneau, Alexis},
|
194 |
+
journal={arXiv preprint arXiv:1901.07291},
|
195 |
+
year={2019}
|
196 |
+
}
|
197 |
+
```
|
198 |
+
|
199 |
+
**APA:**
|
200 |
+
- Lample, G., & Conneau, A. (2019). Cross-lingual language model pretraining. arXiv preprint arXiv:1901.07291.
|
201 |
+
|
202 |
+
# Model Card Authors
|
203 |
+
|
204 |
+
This model card was written by the team at Hugging Face.
|
205 |
+
|
206 |
+
# How to Get Started with the Model
|
207 |
+
|
208 |
+
More information needed. See the [ipython notebook](https://github.com/facebookresearch/XLM/blob/main/generate-embeddings.ipynb) in the associated [GitHub repo](https://github.com/facebookresearch/XLM#the-17-and-100-languages) for examples.
|