My second test version of PPO LunarLander-v2 trained agent
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +22 -22
- ppo-LunarLander-v2/policy.optimizer.pth +1 -1
- ppo-LunarLander-v2/policy.pth +1 -1
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 288.82 +/- 20.28
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x000002E0DE0DEB90>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x000002E0DE0DEC20>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x000002E0DE0DECB0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x000002E0DE0DED40>", "_build": "<function ActorCriticPolicy._build at 0x000002E0DE0DEDD0>", "forward": "<function ActorCriticPolicy.forward at 0x000002E0DE0DEE60>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x000002E0DE0DEEF0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x000002E0DE0DEF80>", "_predict": "<function ActorCriticPolicy._predict at 0x000002E0DE0DF010>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x000002E0DE0DF0A0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x000002E0DE0DF130>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x000002E0DE0DF1C0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x000002E0DE0D69C0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1706108049635662000, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGZClr2PlkO6bRVTO+2yFba/O4u6utoVtQAAgD8AAIA/ZRqgvimhXD2BuYy9Yy0Qvufh5LxQTZU9AAAAAAAAAABmuQO+rr2JunuwMDp6Hoe2lgeWutM+TLkAAIA/AACAPwYYdr49CT4+O4g2PFkAe74kNFa7/iWnPQAAAAAAAAAA7VIfvrDVkT4+EpG7nV1Yvl/bzbr0e429AAAAAAAAAACznS294bCOunVUILrPvG023HULOVypOTkAAIA/AACAP6aBxj1clwK6ZgLYOMSv/jKg0sK70TUAuAAAgD8AAIA/ZvhCvVIAzrmjXnE7XE4VNzmgyjpOBpC6AACAPwAAgD8Ahhm8j05GuoVUbDt8ayo23YXZuuJbiroAAIA/AACAP83k4bxIu4O6nn1RO98Kk7Y0ZXy6Egh0ugAAgD8AAIA/mt0dvRgVZD/uUKq9NE9qvq+nOjob5Pu8AAAAAAAAAAANH6O9w5lNusVMErlqL8q09/o7ulzyLDgAAIA/AACAP+1TVr5ueYy8WIrTuoJlC7n+bvY9GOMEOgAAgD8AAIA/M1vDPNeNsT9ooxU/snKbvsubaryixB28AAAAAAAAAADGJhM+SNGYO6d3iTnRYwE3Sl08PSs1sLgAAIA/AACAPwCSWrzDuR66UyQhuUTsMLZ79kO6US9BOAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQFoHoHs1KoSMAWyUTegDjAF0lEdAj3VVqveP73V9lChoBke/+l69kBjnWGgHTTcBaAhHQI94bSJCSid1fZQoaAZHQGI4YPf8/EBoB03oA2gIR0CPenjkMkQgdX2UKGgGR0BkgbP8hs68aAdN6ANoCEdAj33uBDohZHV9lChoBkdAXM+EM9bHImgHTegDaAhHQI+Hmhf0Eox1fZQoaAZHQGIOX4j8k2RoB03oA2gIR0CPibBLwnYydX2UKGgGR0Bh48zVMEidaAdN6ANoCEdAj4urtVrAQHV9lChoBkfASugxi5NGmWgHTSABaAhHQI+Mw9kjHGV1fZQoaAZHQFnCMDwH7gtoB03oA2gIR0CPjmNrCWNWdX2UKGgGR0BepCbYsd1daAdN6ANoCEdAj47zHKfWc3V9lChoBkdAXvKJiy6cy2gHTegDaAhHQI+v3SYw7DF1fZQoaAZHQDqs5fdAPd5oB00KAWgIR0CPsxBvaURndX2UKGgGR0Bf3uNxVAAyaAdN6ANoCEdAj7X6z3RG+nV9lChoBkdAYVu/hVENOWgHTegDaAhHQI+3iCpWFOB1fZQoaAZHQF1tT6zmfXhoB03oA2gIR0CPv/bpNbkfdX2UKGgGR0BfBaqXF98aaAdN6ANoCEdAj8VW6TW5H3V9lChoBkdAYzwNz8xbjmgHTegDaAhHQI/Gtlf7aZh1fZQoaAZHQGLZu9nK4hFoB03oA2gIR0CPy2Xrt3OfdX2UKGgGR0BitjwH7gsLaAdN6ANoCEdAj8upgTh5xHV9lChoBkdAY498Sf16FGgHTegDaAhHQI/O4MfA9FF1fZQoaAZHQGWNSVW0Z3toB03oA2gIR0CP1F0lJHy3dX2UKGgGR0BemlOfukULaAdN6ANoCEdAj95jcM3IdXV9lChoBkdAZwuABkqc3GgHTegDaAhHQI/gizNUwSJ1fZQoaAZHwDFxD+irT6VoB01fAWgIR0CP4hG2CulodX2UKGgGR0BbUgcHWz4UaAdN6ANoCEdAj+KGbLEDQ3V9lChoBkdAaGkiQkona2gHTegDaAhHQI/lEpEx7At1fZQoaAZHQF+EYixFAmloB03oA2gIR0CP5aYNRWLhdX2UKGgGR8AQNVHWjGkvaAdNDQFoCEdAkAJhWkrPMXV9lChoBkdAZJ0qU/wAl2gHTegDaAhHQJADJPVNHpd1fZQoaAZHQFgkkVvddmhoB03oA2gIR0CQBJbj94u9dX2UKGgGR0Bdi6ASWZ7YaAdN6ANoCEdAkAXdonKGL3V9lChoBkdAZao9XcQAdWgHTegDaAhHQJAGnp2U0N11fZQoaAZHQGUankDIRyxoB03oA2gIR0CQCtMnqmj1dX2UKGgGR0BqgkWKuSwGaAdN1wFoCEdAkAsCJTER8XV9lChoBkdAX0ixoqTbFmgHTegDaAhHQJANeETQE6l1fZQoaAZHQGo4sVtXPqtoB038AWgIR0CQDbHnU2DQdX2UKGgGR0BgoRL26ClKaAdN6ANoCEdAkA4nQpnYhHV9lChoBkdAXi76xgRbr2gHTegDaAhHQJAQy6f8Mux1fZQoaAZHQGBK1kc0cfhoB03oA2gIR0CQEqwSrYGudX2UKGgGR0BfJmL9/BnBaAdN6ANoCEdAkBXk0elsQHV9lChoBkdAXEL9aUzKtGgHTegDaAhHQJAdshcJMQF1fZQoaAZHQGPmTdDYywhoB03oA2gIR0CQHqpUgjhUdX2UKGgGR0Bf2dedCmdiaAdN6ANoCEdAkCEaC6H0snV9lChoBkdAa0gTEBKcu2gHTfYBaAhHQJAhraZhKDl1fZQoaAZHQGOq9OIqLCNoB03oA2gIR0CQJvODrZ8KdX2UKGgGR0Bhv659Vmz0aAdN6ANoCEdAkDK9Nvfj0nV9lChoBkdAXwGR7qptJmgHTegDaAhHQJA0YWXTmXB1fZQoaAZHQGIKYiPhhphoB03oA2gIR0CQNbbG3nZCdX2UKGgGR0BWtkTDfm9yaAdN6ANoCEdAkDZzhgmZ3XV9lChoBkdAV+VUp/gBLmgHTegDaAhHQJA6gSoOx0N1fZQoaAZHQFxPFcY64lRoB03oA2gIR0CQOqaMaS9vdX2UKGgGR8BDDt6HCXQdaAdNDgFoCEdAkDvIaYNRWXV9lChoBkdAZBOuFHrhSGgHTegDaAhHQJA9NLQHAyp1fZQoaAZHQFyMgssg+yJoB03oA2gIR0CQPW5WzWwvdX2UKGgGR0BfzTHKfWc0aAdN6ANoCEdAkEAW9tdiUnV9lChoBkdAVnXHCGetjmgHTegDaAhHQJBB5P1tfol1fZQoaAZHwBzK0+kgwGpoB0vnaAhHQJBEu5avA451fZQoaAZHQGQs/vv0AcVoB03oA2gIR0CQRNIhQm/ndX2UKGgGR0BfHgZKnNxEaAdN6ANoCEdAkEtN6kZaV3V9lChoBkdAYhLvCMxXXGgHTegDaAhHQJBMHta6jFh1fZQoaAZHQGPhXUYsNDtoB03oA2gIR0CQTiAVO9FndX2UKGgGR0BjORGSZBszaAdN6ANoCEdAkE6hMWXTmXV9lChoBkdAYJV7OVxCIGgHTegDaAhHQJBTnKW9lEt1fZQoaAZHQGKbdaMaS9xoB03oA2gIR0CQYRpt78ekdX2UKGgGR8BFqt/vv0AcaAdL/2gIR0CQYd1KGtZFdX2UKGgGR0BieFDF6zE8aAdN6ANoCEdAkGJilnAZbnV9lChoBkdAYZ09C/oJRmgHTegDaAhHQJBjAnMMZxd1fZQoaAZHQF3WLqUu+RJoB03oA2gIR0CQZn4T9KmLdX2UKGgGR0BdcfUz9CNTaAdN6ANoCEdAkGafMKTjenV9lChoBkdAYRG4ecQRPGgHTegDaAhHQJBnib8WKuV1fZQoaAZHQGGqaoVEd/9oB03oA2gIR0CQaLqfe1rqdX2UKGgGR0Bcr7UTcqOMaAdN6ANoCEdAkGue5BkZrHV9lChoBkdAYu4ornTy8WgHTegDaAhHQJBtd0Syt3h1fZQoaAZHQGDJjTKDCgtoB03oA2gIR0CQcIsJ6Y3OdX2UKGgGR0BiYRmwqy4XaAdN6ANoCEdAkHCkJjUd73V9lChoBkdAYwTGm1pj+mgHTegDaAhHQJB3xe/pMYd1fZQoaAZHQGGwV+AmReVoB03oA2gIR0CQeLM3ZPEbdX2UKGgGR8Aucjafzz3AaAdL+GgIR0CQej4+KTB7dX2UKGgGR0BiHc5CF9KFaAdN6ANoCEdAkHugLJCBw3V9lChoBkdAXpO05U96kmgHTegDaAhHQJCAy/yoXKt1fZQoaAZHQF51KAJ9iMJoB03oA2gIR0CQjggam4y5dX2UKGgGR0BeuBcE/0NCaAdN6ANoCEdAkI7Z00WM0nV9lChoBkdAXaWx+rlvImgHTegDaAhHQJCPaASWZ7Z1fZQoaAZHQGJ5FSbYsd1oB03oA2gIR0CQkBogFHJ+dX2UKGgGR0BgWhEORT0haAdN6ANoCEdAkJQ6cI7eVXV9lChoBkdAWuBha1TisGgHTegDaAhHQJCUYFPi1iR1fZQoaAZHQGHNG0mdAgRoB03oA2gIR0CQlW9FnZkDdX2UKGgGR0BgYPuy/sVtaAdN6ANoCEdAkJbAYYR/VnV9lChoBkdAYAQ5WilBQmgHTegDaAhHQJCZsQTVUdd1fZQoaAZHQFvnKP4mCy1oB03oA2gIR0CQm4w4bS7YdX2UKGgGR0BuKjJp35eraAdNhgFoCEdAkJutAPd2xXV9lChoBkdAY8tZwn6VMWgHTegDaAhHQJCegq5LAYZ1fZQoaAZHwB/6HCXQdCFoB00aAWgIR0CQn/2pyZKGdX2UKGgGR0A3Cs3AEdNnaAdL9GgIR0CQpA7WuoxYdX2UKGgGR0BhyYKWszVMaAdN6ANoCEdAkKUXoxHoYHV9lChoBkdAXq7bWVeKK2gHTegDaAhHQJCl2uvECNl1fZQoaAZHQGH/fqoqCpZoB03oA2gIR0CQpy0PH1e0dX2UKGgGR0BiSM/jbSJCaAdN6ANoCEdAkKhZFb3XZ3V9lChoBkdAWeqb3Gn4wmgHTegDaAhHQJCsutKZlWh1fZQoaAZHQGLsx4ptrKxoB03oA2gIR0CQryx33YcvdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVaQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVGM6XFVzZXJzXEhhcnJ5XGFuYWNvbmRhM1xlbnZzXFJMXGxpYlxzaXRlLXBhY2thZ2VzXHN0YWJsZV9iYXNlbGluZXMzXGNvbW1vblx1dGlscy5weZSMBGZ1bmOUS4RDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgefZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVaQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVGM6XFVzZXJzXEhhcnJ5XGFuYWNvbmRhM1xlbnZzXFJMXGxpYlxzaXRlLXBhY2thZ2VzXHN0YWJsZV9iYXNlbGluZXMzXGNvbW1vblx1dGlscy5weZSMBGZ1bmOUS4RDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgefZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "system_info": {"OS": "Windows-10-10.0.22621-SP0 10.0.22621", "Python": "3.10.13", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.26.3", "Cloudpickle": "3.0.0", "Gymnasium": "0.28.1"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x00000185FE982B90>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x00000185FE982C20>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x00000185FE982CB0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x00000185FE982D40>", "_build": "<function ActorCriticPolicy._build at 0x00000185FE982DD0>", "forward": "<function ActorCriticPolicy.forward at 0x00000185FE982E60>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x00000185FE982EF0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x00000185FE982F80>", "_predict": "<function ActorCriticPolicy._predict at 0x00000185FE983010>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x00000185FE9830A0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x00000185FE983130>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x00000185FE9831C0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x00000185FD6EC380>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 2031616, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1706111877215863700, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAApy716MLc/xc3Jvvv5kL49GgW+7Dy9vQAAAAAAAAAAZi8vvY/+Jro79hc6Z0OmtVNIybtoFTK5AACAPwAAgD+aPqK8UPK7PyKXnL71jbc+OW4/u2qG170AAAAAAAAAAGbuwb06ZpU/aq2/vtEFFb8iJhe+jTQgvgAAAAAAAAAAwxONPnJQZj8f0hA+ID8Kvznhoz74nm29AAAAAAAAAADAU4I9kdMlP3k4gj1Kfeu+q3WZPWiU2LwAAAAAAAAAALOvCb4VgHM+z2SvPrulxb6/9H86wo5UPgAAAAAAAAAA+hUSvuAvjj54654+Sb+4viqCWLuG0+M9AAAAAAAAAACzRrW99phRPb7VwD3bxVm+cV1APeVgBD0AAAAAAAAAAIB4Z70aSqw/+mwsv8sS6L6T5ZI8D7TFvQAAAAAAAAAA5vj1PcApkT6edQq+y2SKvl6+1z2KnYe9AAAAAAAAAABz/6S97EHPuRtkcLxj6CQ2rDzuukAgmLUAAAAAAAAAAGa+3b21Nxw+rT4FP5amcr4o4hU+cTMYPgAAAAAAAAAAZnWWPLixtz8BZrQ+rUYmPiMXrbsJoDI9AAAAAAAAAACaloY8LoOsPyMbnj6fXx2/Pq8sOuJLpz0AAAAAAAAAAABNCT63w0o/fW8MPuKeD7+/sjM+u+nvOgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV6QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHGC7Q5WBBmMAWyUS7qMAXSUR0CZt07DEWIodX2UKGgGR0ByMuJpFkQPaAdL2WgIR0CZt2VKPGQ0dX2UKGgGR0By/DeEZiuuaAdL3mgIR0CZt/c580DVdX2UKGgGR0Bx8XCFbmlqaAdL+2gIR0CZuFHSWqtHdX2UKGgGR0BzrGZG8VYZaAdNHwFoCEdAmbiG3KB/Z3V9lChoBkdAbxzZrYXfqGgHS/BoCEdAmbiprYXfqHV9lChoBkdAbxG40dilSGgHS9ZoCEdAmbjmi+L3sXV9lChoBkdAcgOLCvX9SGgHS8BoCEdAmbjttuUD+3V9lChoBkdAcrFtG/etS2gHS/JoCEdAmbllBdD6WXV9lChoBkdAc27QT238XWgHS8toCEdAmbm3Dm8ujHV9lChoBkdAcq9qN6w+uGgHS99oCEdAmbnUwN9YwXV9lChoBkdAc2jeF+NLlGgHS8JoCEdAmbngBDG96HV9lChoBkdAcQ4KFqSHM2gHS/ZoCEdAmbnnLzPKMnV9lChoBkdAcmfkP+XJHWgHS89oCEdAmbnmKQ7tA3V9lChoBkdAc4kfWMCLdmgHTQ4BaAhHQJm6ElqrR0F1fZQoaAZHQHBH5k078vVoB01CAWgIR0CZuhmFajesdX2UKGgGR0BwKECo0hvBaAdLv2gIR0CZunn5i3G5dX2UKGgGR0BvzBFLFn7IaAdL7mgIR0CZuoMwlByCdX2UKGgGR0BzRcIomXw9aAdNqAJoCEdAmbrXUYsND3V9lChoBkdAcWkCCSRr8GgHS8toCEdAmbrx8UmD2HV9lChoBkdAcLBeVs1sL2gHS7loCEdAmbtD987ZF3V9lChoBkdAclefb9If82gHS9BoCEdAmbtTU7Sy+3V9lChoBkdAccNDKYAsCmgHS8doCEdAmbtzEit7r3V9lChoBkdAb/tci4axYGgHS/toCEdAmbu6QFLWZ3V9lChoBkdAcXoDe0ojOmgHS81oCEdAmbv8S5AhS3V9lChoBkdAcKXzT4L1EmgHS7toCEdAmbw1xffGdnV9lChoBkdAbe2A+Y+jd2gHS8VoCEdAmbxFHjIaLnV9lChoBkdAbs5Y8Md92GgHS8RoCEdAmbxTdDYywnV9lChoBkdActOWsijcmGgHS9ZoCEdAmbyEGqxTsXV9lChoBkdAcuZuuieum2gHS+JoCEdAmbyFINEw4HV9lChoBkdAcgVt2cJ+lWgHS+hoCEdAmbzpSBK+SXV9lChoBkdAcTxBInSfDmgHS+poCEdAmbz4InjQzHV9lChoBkdAcZB28qWkamgHS+ZoCEdAmb1PsNUfgnV9lChoBkdAcZoC6pYLcGgHS+doCEdAmb1dAHE/B3V9lChoBkdAcPluOCGvfWgHS8JoCEdAmb2qtHQQc3V9lChoBkdAcFMLXL/0d2gHS75oCEdAmb2uzMRpUXV9lChoBkdAb3GfQrtmc2gHS+BoCEdAmb24BFNL13V9lChoBkdAckLGZNO/L2gHS+1oCEdAmb3HmvGIbnV9lChoBkdAcgYSJCSid2gHS9VoCEdAmb4XiaRZEHV9lChoBkdAcaNBuXNTtWgHS7loCEdAmb4/eP7vX3V9lChoBkdAcvb4u9OARWgHS8VoCEdAmb7BsuWa+nV9lChoBkdAcCaHiFTNuGgHTQEBaAhHQJm+7DR+jM51fZQoaAZHQHDsL0nPVutoB0vjaAhHQJm/Bc8kleF1fZQoaAZHQHJgE1uR9w5oB0vyaAhHQJm/SpDNQj51fZQoaAZHQHEZCgPEsJ9oB0vjaAhHQJm/00elsP91fZQoaAZHQHN5VRpDeCVoB00DAWgIR0CZv9JBgNPQdX2UKGgGR0BzUzP4VRDUaAdL42gIR0CZv+CXhOxjdX2UKGgGR0BxV6VgQYk3aAdL02gIR0CZwAzmOlwcdX2UKGgGR0BxmJRiw0O3aAdNIAFoCEdAmcA6+rU9ZHV9lChoBkdAcpaVM23rlmgHS8FoCEdAmcBBH5Jsf3V9lChoBkdAcbb3OfNA1WgHS8poCEdAmcBSiAUcn3V9lChoBkdAdAhEb5uZTmgHS9hoCEdAmcCBIe5nUXV9lChoBkdAcqoxtpEhJWgHS/FoCEdAmcCAG8mKInV9lChoBkdAcMAhnanJk2gHS81oCEdAmcDyS/0ulHV9lChoBkdAcvTMHKOktWgHS/loCEdAmcEAoXsPa3V9lChoBkdAcpQh8IAwPGgHS+hoCEdAmcEeU6gdwXV9lChoBkdAcKdLgXMyJ2gHS79oCEdAmcF+yquKXXV9lChoBkdAcH9hfBvaUWgHS9xoCEdAmcGXXqZ+hHV9lChoBkdAcQlxhUipvWgHS95oCEdAmcHE4JeE7HV9lChoBkdAchbJDVpblmgHS9NoCEdAmcH8LSeAeHV9lChoBkdAcl5dZ7ojfWgHS8toCEdAmcJcLBsQ/XV9lChoBkdAcama37UG3WgHS9RoCEdAmcJ47Rv3rXV9lChoBkdAcwHDSPU8WGgHS+ZoCEdAmcLFum78N3V9lChoBkdAcxqtTkyULWgHS95oCEdAmcLTjrAxjHV9lChoBkdAcNAO8kD6nGgHS9doCEdAmcLk+C9RJnV9lChoBkdAbzD0/4ZdfWgHS9FoCEdAmcLpEMLF43V9lChoBkdAcdA1jiGWU2gHS9BoCEdAmcMUo8ZDRnV9lChoBkdAcoRbbDdgv2gHS+9oCEdAmcM3dTHbRHV9lChoBkdAbnj0qYqoZWgHS+loCEdAmcNiiqQzUXV9lChoBkdAcJKQZXMhYGgHS9doCEdAmcOY0Q9RrXV9lChoBkdAcM3EhaC+UWgHS9JoCEdAmcOzdDYywnV9lChoBkdAc8VsD4gzQGgHS+xoCEdAmcPkmx+rl3V9lChoBkdAcLAuvUz9CWgHS8loCEdAmcQRKYiPhnV9lChoBkdAcYkK/VRUFWgHS9JoCEdAmcRfJaJQ+HV9lChoBkdAcvbjwQUYbmgHS+poCEdAmcRiOBDohnV9lChoBkdAcX6tEG7jDWgHS9hoCEdAmcSnWJ79h3V9lChoBkdAcxqbhWHUMGgHS9poCEdAmcUQ5R0lq3V9lChoBkdAcRtXcQAdXGgHS81oCEdAmcVUlAu7H3V9lChoBkdAcOFJ5E+gUWgHS81oCEdAmcV3ZPEbYXV9lChoBkdAcz2ua4MF2WgHS9NoCEdAmcWIzSCvo3V9lChoBkdAcqzfozN2T2gHS9poCEdAmcWP+GXXy3V9lChoBkdAcx5lMh5gPWgHS/hoCEdAmcWcQqZtvXV9lChoBkdAcRWSntOVPmgHS+JoCEdAmcXokmhM8HV9lChoBkdAcEU/zreImGgHS85oCEdAmcX5+6RQrXV9lChoBkdAcWrUHIIWxmgHS+loCEdAmcYhacI7eXV9lChoBkdAcY2P3ztkWmgHS+BoCEdAmcaKAJ9iMHV9lChoBkdAby5zKcNH6WgHTQgBaAhHQJnG9pCa7Vd1fZQoaAZHQG4OWsq8UVVoB0voaAhHQJnHEPOIInl1fZQoaAZHQHJt7zkIX0poB00EAWgIR0CZxzt03fhudX2UKGgGR0BxNmSjgydnaAdL52gIR0CZx2FX7tRfdX2UKGgGR0Bv4mX1J17qaAdL8GgIR0CZx3rxiG34dX2UKGgGR0ByYzNJOFg2aAdLtWgIR0CZx992HLzPdX2UKGgGR0BuI+PmxMWXaAdLv2gIR0CZx+/Yao/BdX2UKGgGR0ByF4EW69TQaAdL5GgIR0CZyA6+nIhhdX2UKGgGR0Bxue8Djin6aAdLu2gIR0CZyHMuvlltdX2UKGgGR0BvRrxNIsiCaAdL8WgIR0CZyIB+nZTRdX2UKGgGR0Bw+78rI5o5aAdL6WgIR0CZyK+ZPVNIdX2UKGgGR0BxBNzS1E3LaAdL72gIR0CZyLbEP1+RdX2UKGgGR0BxV6waBI4EaAdL1GgIR0CZyLnWrfcfdX2UKGgGR0Bxev6sQumKaAdLwmgIR0CZyLrc0tROdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 620, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.99, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVaQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVGM6XFVzZXJzXEhhcnJ5XGFuYWNvbmRhM1xlbnZzXFJMXGxpYlxzaXRlLXBhY2thZ2VzXHN0YWJsZV9iYXNlbGluZXMzXGNvbW1vblx1dGlscy5weZSMBGZ1bmOUS4RDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgefZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVaQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVGM6XFVzZXJzXEhhcnJ5XGFuYWNvbmRhM1xlbnZzXFJMXGxpYlxzaXRlLXBhY2thZ2VzXHN0YWJsZV9iYXNlbGluZXMzXGNvbW1vblx1dGlscy5weZSMBGZ1bmOUS4RDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgefZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "system_info": {"OS": "Windows-10-10.0.22621-SP0 10.0.22621", "Python": "3.10.13", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.26.3", "Cloudpickle": "3.0.0", "Gymnasium": "0.28.1"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e37370b204230b24799a7a6d1faeac11df9c7200e037792e74dd330b81aea410
|
3 |
+
size 146577
|
ppo-LunarLander-v2/data
CHANGED
@@ -4,34 +4,34 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc._abc_data object at
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
24 |
-
"num_timesteps":
|
25 |
-
"_total_timesteps":
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
-
"start_time":
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
-
":serialized:": "
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -45,21 +45,21 @@
|
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
-
":serialized:": "
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
52 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
},
|
54 |
-
"_n_updates":
|
55 |
-
"n_steps":
|
56 |
"gamma": 0.999,
|
57 |
-
"gae_lambda": 0.
|
58 |
"ent_coef": 0.01,
|
59 |
"vf_coef": 0.5,
|
60 |
"max_grad_norm": 0.5,
|
61 |
"batch_size": 64,
|
62 |
-
"n_epochs":
|
63 |
"clip_range": {
|
64 |
":type:": "<class 'function'>",
|
65 |
":serialized:": "gAWVaQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVGM6XFVzZXJzXEhhcnJ5XGFuYWNvbmRhM1xlbnZzXFJMXGxpYlxzaXRlLXBhY2thZ2VzXHN0YWJsZV9iYXNlbGluZXMzXGNvbW1vblx1dGlscy5weZSMBGZ1bmOUS4RDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgefZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x00000185FE982B90>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x00000185FE982C20>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x00000185FE982CB0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x00000185FE982D40>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x00000185FE982DD0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x00000185FE982E60>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x00000185FE982EF0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x00000185FE982F80>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x00000185FE983010>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x00000185FE9830A0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x00000185FE983130>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x00000185FE9831C0>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x00000185FD6EC380>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 2031616,
|
25 |
+
"_total_timesteps": 2000000,
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
+
"start_time": 1706111877215863700,
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAApy716MLc/xc3Jvvv5kL49GgW+7Dy9vQAAAAAAAAAAZi8vvY/+Jro79hc6Z0OmtVNIybtoFTK5AACAPwAAgD+aPqK8UPK7PyKXnL71jbc+OW4/u2qG170AAAAAAAAAAGbuwb06ZpU/aq2/vtEFFb8iJhe+jTQgvgAAAAAAAAAAwxONPnJQZj8f0hA+ID8Kvznhoz74nm29AAAAAAAAAADAU4I9kdMlP3k4gj1Kfeu+q3WZPWiU2LwAAAAAAAAAALOvCb4VgHM+z2SvPrulxb6/9H86wo5UPgAAAAAAAAAA+hUSvuAvjj54654+Sb+4viqCWLuG0+M9AAAAAAAAAACzRrW99phRPb7VwD3bxVm+cV1APeVgBD0AAAAAAAAAAIB4Z70aSqw/+mwsv8sS6L6T5ZI8D7TFvQAAAAAAAAAA5vj1PcApkT6edQq+y2SKvl6+1z2KnYe9AAAAAAAAAABz/6S97EHPuRtkcLxj6CQ2rDzuukAgmLUAAAAAAAAAAGa+3b21Nxw+rT4FP5amcr4o4hU+cTMYPgAAAAAAAAAAZnWWPLixtz8BZrQ+rUYmPiMXrbsJoDI9AAAAAAAAAACaloY8LoOsPyMbnj6fXx2/Pq8sOuJLpz0AAAAAAAAAAABNCT63w0o/fW8MPuKeD7+/sjM+u+nvOgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV6QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHGC7Q5WBBmMAWyUS7qMAXSUR0CZt07DEWIodX2UKGgGR0ByMuJpFkQPaAdL2WgIR0CZt2VKPGQ0dX2UKGgGR0By/DeEZiuuaAdL3mgIR0CZt/c580DVdX2UKGgGR0Bx8XCFbmlqaAdL+2gIR0CZuFHSWqtHdX2UKGgGR0BzrGZG8VYZaAdNHwFoCEdAmbiG3KB/Z3V9lChoBkdAbxzZrYXfqGgHS/BoCEdAmbiprYXfqHV9lChoBkdAbxG40dilSGgHS9ZoCEdAmbjmi+L3sXV9lChoBkdAcgOLCvX9SGgHS8BoCEdAmbjttuUD+3V9lChoBkdAcrFtG/etS2gHS/JoCEdAmbllBdD6WXV9lChoBkdAc27QT238XWgHS8toCEdAmbm3Dm8ujHV9lChoBkdAcq9qN6w+uGgHS99oCEdAmbnUwN9YwXV9lChoBkdAc2jeF+NLlGgHS8JoCEdAmbngBDG96HV9lChoBkdAcQ4KFqSHM2gHS/ZoCEdAmbnnLzPKMnV9lChoBkdAcmfkP+XJHWgHS89oCEdAmbnmKQ7tA3V9lChoBkdAc4kfWMCLdmgHTQ4BaAhHQJm6ElqrR0F1fZQoaAZHQHBH5k078vVoB01CAWgIR0CZuhmFajesdX2UKGgGR0BwKECo0hvBaAdLv2gIR0CZunn5i3G5dX2UKGgGR0BvzBFLFn7IaAdL7mgIR0CZuoMwlByCdX2UKGgGR0BzRcIomXw9aAdNqAJoCEdAmbrXUYsND3V9lChoBkdAcWkCCSRr8GgHS8toCEdAmbrx8UmD2HV9lChoBkdAcLBeVs1sL2gHS7loCEdAmbtD987ZF3V9lChoBkdAclefb9If82gHS9BoCEdAmbtTU7Sy+3V9lChoBkdAccNDKYAsCmgHS8doCEdAmbtzEit7r3V9lChoBkdAb/tci4axYGgHS/toCEdAmbu6QFLWZ3V9lChoBkdAcXoDe0ojOmgHS81oCEdAmbv8S5AhS3V9lChoBkdAcKXzT4L1EmgHS7toCEdAmbw1xffGdnV9lChoBkdAbe2A+Y+jd2gHS8VoCEdAmbxFHjIaLnV9lChoBkdAbs5Y8Md92GgHS8RoCEdAmbxTdDYywnV9lChoBkdActOWsijcmGgHS9ZoCEdAmbyEGqxTsXV9lChoBkdAcuZuuieum2gHS+JoCEdAmbyFINEw4HV9lChoBkdAcgVt2cJ+lWgHS+hoCEdAmbzpSBK+SXV9lChoBkdAcTxBInSfDmgHS+poCEdAmbz4InjQzHV9lChoBkdAcZB28qWkamgHS+ZoCEdAmb1PsNUfgnV9lChoBkdAcZoC6pYLcGgHS+doCEdAmb1dAHE/B3V9lChoBkdAcPluOCGvfWgHS8JoCEdAmb2qtHQQc3V9lChoBkdAcFMLXL/0d2gHS75oCEdAmb2uzMRpUXV9lChoBkdAb3GfQrtmc2gHS+BoCEdAmb24BFNL13V9lChoBkdAckLGZNO/L2gHS+1oCEdAmb3HmvGIbnV9lChoBkdAcgYSJCSid2gHS9VoCEdAmb4XiaRZEHV9lChoBkdAcaNBuXNTtWgHS7loCEdAmb4/eP7vX3V9lChoBkdAcvb4u9OARWgHS8VoCEdAmb7BsuWa+nV9lChoBkdAcCaHiFTNuGgHTQEBaAhHQJm+7DR+jM51fZQoaAZHQHDsL0nPVutoB0vjaAhHQJm/Bc8kleF1fZQoaAZHQHJgE1uR9w5oB0vyaAhHQJm/SpDNQj51fZQoaAZHQHEZCgPEsJ9oB0vjaAhHQJm/00elsP91fZQoaAZHQHN5VRpDeCVoB00DAWgIR0CZv9JBgNPQdX2UKGgGR0BzUzP4VRDUaAdL42gIR0CZv+CXhOxjdX2UKGgGR0BxV6VgQYk3aAdL02gIR0CZwAzmOlwcdX2UKGgGR0BxmJRiw0O3aAdNIAFoCEdAmcA6+rU9ZHV9lChoBkdAcpaVM23rlmgHS8FoCEdAmcBBH5Jsf3V9lChoBkdAcbb3OfNA1WgHS8poCEdAmcBSiAUcn3V9lChoBkdAdAhEb5uZTmgHS9hoCEdAmcCBIe5nUXV9lChoBkdAcqoxtpEhJWgHS/FoCEdAmcCAG8mKInV9lChoBkdAcMAhnanJk2gHS81oCEdAmcDyS/0ulHV9lChoBkdAcvTMHKOktWgHS/loCEdAmcEAoXsPa3V9lChoBkdAcpQh8IAwPGgHS+hoCEdAmcEeU6gdwXV9lChoBkdAcKdLgXMyJ2gHS79oCEdAmcF+yquKXXV9lChoBkdAcH9hfBvaUWgHS9xoCEdAmcGXXqZ+hHV9lChoBkdAcQlxhUipvWgHS95oCEdAmcHE4JeE7HV9lChoBkdAchbJDVpblmgHS9NoCEdAmcH8LSeAeHV9lChoBkdAcl5dZ7ojfWgHS8toCEdAmcJcLBsQ/XV9lChoBkdAcama37UG3WgHS9RoCEdAmcJ47Rv3rXV9lChoBkdAcwHDSPU8WGgHS+ZoCEdAmcLFum78N3V9lChoBkdAcxqtTkyULWgHS95oCEdAmcLTjrAxjHV9lChoBkdAcNAO8kD6nGgHS9doCEdAmcLk+C9RJnV9lChoBkdAbzD0/4ZdfWgHS9FoCEdAmcLpEMLF43V9lChoBkdAcdA1jiGWU2gHS9BoCEdAmcMUo8ZDRnV9lChoBkdAcoRbbDdgv2gHS+9oCEdAmcM3dTHbRHV9lChoBkdAbnj0qYqoZWgHS+loCEdAmcNiiqQzUXV9lChoBkdAcJKQZXMhYGgHS9doCEdAmcOY0Q9RrXV9lChoBkdAcM3EhaC+UWgHS9JoCEdAmcOzdDYywnV9lChoBkdAc8VsD4gzQGgHS+xoCEdAmcPkmx+rl3V9lChoBkdAcLAuvUz9CWgHS8loCEdAmcQRKYiPhnV9lChoBkdAcYkK/VRUFWgHS9JoCEdAmcRfJaJQ+HV9lChoBkdAcvbjwQUYbmgHS+poCEdAmcRiOBDohnV9lChoBkdAcX6tEG7jDWgHS9hoCEdAmcSnWJ79h3V9lChoBkdAcxqbhWHUMGgHS9poCEdAmcUQ5R0lq3V9lChoBkdAcRtXcQAdXGgHS81oCEdAmcVUlAu7H3V9lChoBkdAcOFJ5E+gUWgHS81oCEdAmcV3ZPEbYXV9lChoBkdAcz2ua4MF2WgHS9NoCEdAmcWIzSCvo3V9lChoBkdAcqzfozN2T2gHS9poCEdAmcWP+GXXy3V9lChoBkdAcx5lMh5gPWgHS/hoCEdAmcWcQqZtvXV9lChoBkdAcRWSntOVPmgHS+JoCEdAmcXokmhM8HV9lChoBkdAcEU/zreImGgHS85oCEdAmcX5+6RQrXV9lChoBkdAcWrUHIIWxmgHS+loCEdAmcYhacI7eXV9lChoBkdAcY2P3ztkWmgHS+BoCEdAmcaKAJ9iMHV9lChoBkdAby5zKcNH6WgHTQgBaAhHQJnG9pCa7Vd1fZQoaAZHQG4OWsq8UVVoB0voaAhHQJnHEPOIInl1fZQoaAZHQHJt7zkIX0poB00EAWgIR0CZxzt03fhudX2UKGgGR0BxNmSjgydnaAdL52gIR0CZx2FX7tRfdX2UKGgGR0Bv4mX1J17qaAdL8GgIR0CZx3rxiG34dX2UKGgGR0ByYzNJOFg2aAdLtWgIR0CZx992HLzPdX2UKGgGR0BuI+PmxMWXaAdLv2gIR0CZx+/Yao/BdX2UKGgGR0ByF4EW69TQaAdL5GgIR0CZyA6+nIhhdX2UKGgGR0Bxue8Djin6aAdLu2gIR0CZyHMuvlltdX2UKGgGR0BvRrxNIsiCaAdL8WgIR0CZyIB+nZTRdX2UKGgGR0Bw+78rI5o5aAdL6WgIR0CZyK+ZPVNIdX2UKGgGR0BxBNzS1E3LaAdL72gIR0CZyLbEP1+RdX2UKGgGR0BxV6waBI4EaAdL1GgIR0CZyLnWrfcfdX2UKGgGR0Bxev6sQumKaAdLwmgIR0CZyLrc0tROdWUu"
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
52 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
},
|
54 |
+
"_n_updates": 620,
|
55 |
+
"n_steps": 2048,
|
56 |
"gamma": 0.999,
|
57 |
+
"gae_lambda": 0.99,
|
58 |
"ent_coef": 0.01,
|
59 |
"vf_coef": 0.5,
|
60 |
"max_grad_norm": 0.5,
|
61 |
"batch_size": 64,
|
62 |
+
"n_epochs": 10,
|
63 |
"clip_range": {
|
64 |
":type:": "<class 'function'>",
|
65 |
":serialized:": "gAWVaQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVGM6XFVzZXJzXEhhcnJ5XGFuYWNvbmRhM1xlbnZzXFJMXGxpYlxzaXRlLXBhY2thZ2VzXHN0YWJsZV9iYXNlbGluZXMzXGNvbW1vblx1dGlscy5weZSMBGZ1bmOUS4RDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgefZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 88057
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9e86786af2bbbc67bd4ee39a71ba1e19db23c1058713b8b481841ec7eac093f6
|
3 |
size 88057
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43329
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0f654a0bea2ed4f93da5cb6bcf56ceffa0af8a13591053a16ff32969eb41914d
|
3 |
size 43329
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 288.8178156, "std_reward": 20.275310901033837, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-01-25T00:27:11.547572"}
|