Facepalm0 commited on
Commit
4cb4914
1 Parent(s): b1667bb

My first test version of PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 221.56 +/- 48.57
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7d612214f370>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d612214f400>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d612214f490>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d612214f520>", "_build": "<function ActorCriticPolicy._build at 0x7d612214f5b0>", "forward": "<function ActorCriticPolicy.forward at 0x7d612214f640>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7d612214f6d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d612214f760>", "_predict": "<function ActorCriticPolicy._predict at 0x7d612214f7f0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d612214f880>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d612214f910>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7d612214f9a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d61220ff1c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1706028750540148553, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM3Y4ruPzlm6cdotOgKnBDXVClG7IbZMuQAAgD8AAIA/zVRDPK41h7rev425sT3otIKDATr0+aE4AACAPwAAgD+aZb48pEBAuXpD5rreaoK2hC+NO6rQCToAAIA/AACAPzOFRTzXm3y7PxWGvG2KmzxBp8C8BZOEPQAAgD8AAIA/AA9ovSkkcbqtyzU3s6syMonV+rqL1lW2AACAPwAAgD9zlJ+9e76fuq2bU7v3Q5K1LyU2OTDFczoAAAAAAACAP7MBib3On2k/prpfvfDfnL6/i0+8eI7cPAAAAAAAAAAAAHISPI8yYrqLM1460ftfNb5w6br+JoK5AACAPwAAgD+a4Yi8FCFQPzLhx7x6CKO+HEjJu3SDmb0AAAAAAAAAAACYHrxcv3y6CZ7Cuj61qLXQhxO7VovjOQAAgD8AAIA/umMSvp2++T5L7qU90SCLvv9G37zsdQC9AAAAAAAAAADNM768j94luqz2wzoeI8g1PSqxOmro6LkAAIA/AACAPzMkL73sec25Peqsug4lmLaoyma6VmIMNgAAgD8AAIA/AAOHvUhDg7qpfoA60heGtpLhoDp6Z4C1AACAPwAAgD+6LFM+535zP32uYb020nS+kLEXPS1o97wAAAAAAAAAAADWO717+rG6dZReuj6CWrW4ahm6yFt+OQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGNtE3bVSXOMAWyUTegDjAF0lEdAqMiOk8A7xXV9lChoBkdAZx5rUsnRcGgHTegDaAhHQKjJdI4EOiF1fZQoaAZHQGFbE7OmixpoB03oA2gIR0CozKsK9f1IdX2UKGgGR0BlIIH5aePJaAdN6ANoCEdAqM2JDPWxyHV9lChoBkdAMaIfCAMDwGgHTRwBaAhHQKjN+oNutOp1fZQoaAZHQGWMVaW5Yo1oB03oA2gIR0CoziAjY7JXdX2UKGgGR0BDG5+hGpdbaAdL52gIR0CozvEfDDTCdX2UKGgGR0BjoqNuLrHEaAdN6ANoCEdAqNMiEal1sHV9lChoBkdAZBc/3WWhRWgHTegDaAhHQKjTd2ovSMN1fZQoaAZHQGHofXGwRoRoB03oA2gIR0Co3n8YQ8OkdX2UKGgGR0BiI0ytV7x/aAdN6ANoCEdAqN7GxnnMdXV9lChoBkdAYXKoQWepXWgHTegDaAhHQKjiJk+5e7d1fZQoaAZHQHCQyKvV3EBoB015AWgIR0Co4l8wg1WKdX2UKGgGR0BnVWk30f5laAdN6ANoCEdAqON4la8pTnV9lChoBkdAYdM//vOQhmgHTegDaAhHQKjjwiml67d1fZQoaAZHQF4Ximl67d1oB03oA2gIR0Co6GJ71Iy1dX2UKGgGR0BheKRU3n6maAdN6ANoCEdAqOqAxagVXXV9lChoBkdAP83B+F10T2gHTQgBaAhHQKjq/9cbBGh1fZQoaAZHQGbgmce8wpRoB03oA2gIR0Co7TR59mYjdX2UKGgGR0BeZyvX9R77aAdN6ANoCEdAqO8O5OJtSHV9lChoBkdAXFIR+SbH62gHTegDaAhHQKjysdat9x91fZQoaAZHQGSvYFA3T/hoB03oA2gIR0Co892BJ7LMdX2UKGgGR0BlJgLy+YdAaAdN6ANoCEdAqPSlph4MW3V9lChoBkdAYsy7aIvalGgHTegDaAhHQKj14Gs3hn91fZQoaAZHQEkzc0Ltu1poB00ZAWgIR0Co+FIxQBPsdX2UKGgGR0Bc6Qc1fmcOaAdN6ANoCEdAqPos0HhS+HV9lChoBkdAYp0/tY0VJ2gHTegDaAhHQKj6foPCl8B1fZQoaAZHQGLfZXU6PsBoB03oA2gIR0CpBDXEQ5FPdX2UKGgGR0BjwpxWDHwPaAdN6ANoCEdAqQR5omG/OHV9lChoBkdAZrZJV81Gb2gHTegDaAhHQKkH0RwIdEN1fZQoaAZHQGWhxL9MsYloB03oA2gIR0CpCA+EIw/QdX2UKGgGR0BmMBlWfbsXaAdN6ANoCEdAqQk18uzyBnV9lChoBkdAZFrjqfOD8WgHTegDaAhHQKkQTycTakB1fZQoaAZHQGTYYzSCvoxoB03oA2gIR0CpEslnyup0dX2UKGgGR0BgrL2xptaZaAdN6ANoCEdAqRNJ1DBuXXV9lChoBkdAY1BOryUcGWgHTegDaAhHQKkVlg/C66J1fZQoaAZHQGUNZzxPO6doB03oA2gIR0CpGtOsLfDUdX2UKGgGR0BnYNiH6/IsaAdN6ANoCEdAqRu9XaJyhnV9lChoBkdAYtwBPKuB+WgHTegDaAhHQKkcWOBlMAZ1fZQoaAZHQGa7WOp84PxoB03oA2gIR0CpHTeSB9ThdX2UKGgGR0Bmp48SwnpjaAdN6ANoCEdAqR+G1WsBAHV9lChoBkdAZQ0CZnctXmgHTegDaAhHQKkha/rSmZV1fZQoaAZHQGSc2uPmxMZoB03oA2gIR0CpIbnpSrHVdX2UKGgGR0BiOb5O8CgcaAdN6ANoCEdAqSL7x0+1SnV9lChoBkdAYlTm5DqnnGgHTegDaAhHQKkjP/kvK2d1fZQoaAZHQGGo7Q1JlJ9oB03oA2gIR0CpMDNmDlHSdX2UKGgGR0BniG6NEPUbaAdN6ANoCEdAqTBumelKsnV9lChoBkdAXXxvZRKpUGgHTegDaAhHQKkxjRplBhR1fZQoaAZHQGPs9J8OTaFoB03oA2gIR0CpNzLMTviMdX2UKGgGR0BjDxf+jua4aAdN6ANoCEdAqTlZWaMJhXV9lChoBkdAZZTR3NcGDGgHTegDaAhHQKk52VTJhfB1fZQoaAZHQGbCNKZlWfdoB03oA2gIR0CpPAuskpqidX2UKGgGR0ANQfwI+nqFaAdLwmgIR0CpPzJhWo3rdX2UKGgGR0BgE83EQ5FPaAdN6ANoCEdAqUJUcMmWt3V9lChoBkdAY/diMHbAUWgHTegDaAhHQKlDjShJyyV1fZQoaAZHQGTOdYfW+XZoB03oA2gIR0CpRDb48EFGdX2UKGgGR0BjCfVEuxr0aAdN6ANoCEdAqUUGYtxuK3V9lChoBkdAcNB8rqdH2GgHTZ4DaAhHQKlFQR15jYt1fZQoaAZHQGMxUO3DvVpoB03oA2gIR0CpSNaLOzIFdX2UKGgGR0BgiEuxrzoVaAdN6ANoCEdAqUkiUqx1PnV9lChoBkdAZ2+ywfQrtmgHTegDaAhHQKlKVBnBciZ1fZQoaAZHQGOw9g4OtnxoB03oA2gIR0CpSpgUDdP+dX2UKGgGR0BlyEspXp4baAdN6ANoCEdAqVYdVvMr3HV9lChoBkdAYksAG0NSZWgHTegDaAhHQKlWVs67ulZ1fZQoaAZHQGWHgZbY9PloB03oA2gIR0CpV26fzz3AdX2UKGgGR0BRQ2YWtU4raAdL82gIR0CpWCvwVj7RdX2UKGgGR0BPaJnQID5kaAdNKQFoCEdAqVngsAeaKHV9lChoBkdAYpcTlDF6zGgHTegDaAhHQKleTckdFOR1fZQoaAZHQGIuGgSOBDpoB03oA2gIR0CpYPnBLwnZdX2UKGgGR0BHCUwztTkyaAdNFQFoCEdAqWQbjkuHvnV9lChoBkdAZPN+KjzqbGgHTegDaAhHQKlkZc8DB/J1fZQoaAZHQG5BGjj7yhBoB007A2gIR0CpZNkX1rZbdX2UKGgGR0BiVenhsImgaAdN6ANoCEdAqWfLqOcUd3V9lChoBkdAPD0bT+ee4GgHS9NoCEdAqWql9ph4MXV9lChoBkdAZmXIPK+zt2gHTegDaAhHQKlrBG5MDfZ1fZQoaAZHQGaz0wSJ0nxoB03oA2gIR0Cpa5rSVnmJdX2UKGgGR0BxVPaCcwxnaAdNUAJoCEdAqWuvUWl/IHV9lChoBkdAQSkPz4DcM2gHS/BoCEdAqWv7DEWIoHV9lChoBkdAZWU3bVSXMWgHTegDaAhHQKlsZFrl/6R1fZQoaAZHQGVk+lsP8Q9oB03oA2gIR0CpbJqFRHf/dX2UKGgGR0BlOVFfAsTWaAdN6ANoCEdAqXHZZyMkyHV9lChoBkdAZJQXu3MINWgHTegDaAhHQKlyQnIhhYx1fZQoaAZHQGOtiCBf8dhoB03oA2gIR0CpgKC3gDRudX2UKGgGR0BhnG7HyVfNaAdN6ANoCEdAqYETT+ee4HV9lChoBkdAZ2EcI7eVLWgHTegDaAhHQKmDaGpMpPR1fZQoaAZHQGThJJoTPB1oB03oA2gIR0CpiyHggow3dX2UKGgGR0BmeCp3os7NaAdN6ANoCEdAqY+sPz4DcXV9lChoBkdAY/EB06o2oGgHTegDaAhHQKmTUDvE0i11fZQoaAZHQGOREfDDTBtoB03oA2gIR0Cplsm51/2CdX2UKGgGR0Bj7Jf8dgfEaAdN6ANoCEdAqZqwxrSE13V9lChoBkdAZVJiy6cy32gHTegDaAhHQKmbJbr1M/R1fZQoaAZHQGPNemFajetoB03oA2gIR0Cpm9/2K2rodX2UKGgGR0BhcbjT8YQ8aAdN6ANoCEdAqZv6cf/3nXV9lChoBkdAYzzvH93r2WgHTegDaAhHQKmcWESM98t1fZQoaAZHQGKnpp35eqtoB03oA2gIR0CpnNQKa5PNdX2UKGgGR0BgOpoPCl7/aAdN6ANoCEdAqZ0r19ORDHV9lChoBkdANeeMQ2/BWWgHS8hoCEdAqaFglByCF3V9lChoBkdAX26vHLida2gHTegDaAhHQKmi33pwCKd1fZQoaAZHQF4B6y0KJEZoB03oA2gIR0Cpoy8GC7K8dX2UKGgGR0Br5sdtEXtTaAdNJAFoCEdAqaNrdP+GXXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1334c62b088e394bbb87da7e0153336bddc9fc8a094ee6eb91cd3884b94fd9ab
3
+ size 148064
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7d612214f370>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d612214f400>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d612214f490>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d612214f520>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7d612214f5b0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7d612214f640>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7d612214f6d0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d612214f760>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7d612214f7f0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d612214f880>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d612214f910>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7d612214f9a0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7d61220ff1c0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1706028750540148553,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM3Y4ruPzlm6cdotOgKnBDXVClG7IbZMuQAAgD8AAIA/zVRDPK41h7rev425sT3otIKDATr0+aE4AACAPwAAgD+aZb48pEBAuXpD5rreaoK2hC+NO6rQCToAAIA/AACAPzOFRTzXm3y7PxWGvG2KmzxBp8C8BZOEPQAAgD8AAIA/AA9ovSkkcbqtyzU3s6syMonV+rqL1lW2AACAPwAAgD9zlJ+9e76fuq2bU7v3Q5K1LyU2OTDFczoAAAAAAACAP7MBib3On2k/prpfvfDfnL6/i0+8eI7cPAAAAAAAAAAAAHISPI8yYrqLM1460ftfNb5w6br+JoK5AACAPwAAgD+a4Yi8FCFQPzLhx7x6CKO+HEjJu3SDmb0AAAAAAAAAAACYHrxcv3y6CZ7Cuj61qLXQhxO7VovjOQAAgD8AAIA/umMSvp2++T5L7qU90SCLvv9G37zsdQC9AAAAAAAAAADNM768j94luqz2wzoeI8g1PSqxOmro6LkAAIA/AACAPzMkL73sec25Peqsug4lmLaoyma6VmIMNgAAgD8AAIA/AAOHvUhDg7qpfoA60heGtpLhoDp6Z4C1AACAPwAAgD+6LFM+535zP32uYb020nS+kLEXPS1o97wAAAAAAAAAAADWO717+rG6dZReuj6CWrW4ahm6yFt+OQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVPgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGNtE3bVSXOMAWyUTegDjAF0lEdAqMiOk8A7xXV9lChoBkdAZx5rUsnRcGgHTegDaAhHQKjJdI4EOiF1fZQoaAZHQGFbE7OmixpoB03oA2gIR0CozKsK9f1IdX2UKGgGR0BlIIH5aePJaAdN6ANoCEdAqM2JDPWxyHV9lChoBkdAMaIfCAMDwGgHTRwBaAhHQKjN+oNutOp1fZQoaAZHQGWMVaW5Yo1oB03oA2gIR0CoziAjY7JXdX2UKGgGR0BDG5+hGpdbaAdL52gIR0CozvEfDDTCdX2UKGgGR0BjoqNuLrHEaAdN6ANoCEdAqNMiEal1sHV9lChoBkdAZBc/3WWhRWgHTegDaAhHQKjTd2ovSMN1fZQoaAZHQGHofXGwRoRoB03oA2gIR0Co3n8YQ8OkdX2UKGgGR0BiI0ytV7x/aAdN6ANoCEdAqN7GxnnMdXV9lChoBkdAYXKoQWepXWgHTegDaAhHQKjiJk+5e7d1fZQoaAZHQHCQyKvV3EBoB015AWgIR0Co4l8wg1WKdX2UKGgGR0BnVWk30f5laAdN6ANoCEdAqON4la8pTnV9lChoBkdAYdM//vOQhmgHTegDaAhHQKjjwiml67d1fZQoaAZHQF4Ximl67d1oB03oA2gIR0Co6GJ71Iy1dX2UKGgGR0BheKRU3n6maAdN6ANoCEdAqOqAxagVXXV9lChoBkdAP83B+F10T2gHTQgBaAhHQKjq/9cbBGh1fZQoaAZHQGbgmce8wpRoB03oA2gIR0Co7TR59mYjdX2UKGgGR0BeZyvX9R77aAdN6ANoCEdAqO8O5OJtSHV9lChoBkdAXFIR+SbH62gHTegDaAhHQKjysdat9x91fZQoaAZHQGSvYFA3T/hoB03oA2gIR0Co892BJ7LMdX2UKGgGR0BlJgLy+YdAaAdN6ANoCEdAqPSlph4MW3V9lChoBkdAYsy7aIvalGgHTegDaAhHQKj14Gs3hn91fZQoaAZHQEkzc0Ltu1poB00ZAWgIR0Co+FIxQBPsdX2UKGgGR0Bc6Qc1fmcOaAdN6ANoCEdAqPos0HhS+HV9lChoBkdAYp0/tY0VJ2gHTegDaAhHQKj6foPCl8B1fZQoaAZHQGLfZXU6PsBoB03oA2gIR0CpBDXEQ5FPdX2UKGgGR0BjwpxWDHwPaAdN6ANoCEdAqQR5omG/OHV9lChoBkdAZrZJV81Gb2gHTegDaAhHQKkH0RwIdEN1fZQoaAZHQGWhxL9MsYloB03oA2gIR0CpCA+EIw/QdX2UKGgGR0BmMBlWfbsXaAdN6ANoCEdAqQk18uzyBnV9lChoBkdAZFrjqfOD8WgHTegDaAhHQKkQTycTakB1fZQoaAZHQGTYYzSCvoxoB03oA2gIR0CpEslnyup0dX2UKGgGR0BgrL2xptaZaAdN6ANoCEdAqRNJ1DBuXXV9lChoBkdAY1BOryUcGWgHTegDaAhHQKkVlg/C66J1fZQoaAZHQGUNZzxPO6doB03oA2gIR0CpGtOsLfDUdX2UKGgGR0BnYNiH6/IsaAdN6ANoCEdAqRu9XaJyhnV9lChoBkdAYtwBPKuB+WgHTegDaAhHQKkcWOBlMAZ1fZQoaAZHQGa7WOp84PxoB03oA2gIR0CpHTeSB9ThdX2UKGgGR0Bmp48SwnpjaAdN6ANoCEdAqR+G1WsBAHV9lChoBkdAZQ0CZnctXmgHTegDaAhHQKkha/rSmZV1fZQoaAZHQGSc2uPmxMZoB03oA2gIR0CpIbnpSrHVdX2UKGgGR0BiOb5O8CgcaAdN6ANoCEdAqSL7x0+1SnV9lChoBkdAYlTm5DqnnGgHTegDaAhHQKkjP/kvK2d1fZQoaAZHQGGo7Q1JlJ9oB03oA2gIR0CpMDNmDlHSdX2UKGgGR0BniG6NEPUbaAdN6ANoCEdAqTBumelKsnV9lChoBkdAXXxvZRKpUGgHTegDaAhHQKkxjRplBhR1fZQoaAZHQGPs9J8OTaFoB03oA2gIR0CpNzLMTviMdX2UKGgGR0BjDxf+jua4aAdN6ANoCEdAqTlZWaMJhXV9lChoBkdAZZTR3NcGDGgHTegDaAhHQKk52VTJhfB1fZQoaAZHQGbCNKZlWfdoB03oA2gIR0CpPAuskpqidX2UKGgGR0ANQfwI+nqFaAdLwmgIR0CpPzJhWo3rdX2UKGgGR0BgE83EQ5FPaAdN6ANoCEdAqUJUcMmWt3V9lChoBkdAY/diMHbAUWgHTegDaAhHQKlDjShJyyV1fZQoaAZHQGTOdYfW+XZoB03oA2gIR0CpRDb48EFGdX2UKGgGR0BjCfVEuxr0aAdN6ANoCEdAqUUGYtxuK3V9lChoBkdAcNB8rqdH2GgHTZ4DaAhHQKlFQR15jYt1fZQoaAZHQGMxUO3DvVpoB03oA2gIR0CpSNaLOzIFdX2UKGgGR0BgiEuxrzoVaAdN6ANoCEdAqUkiUqx1PnV9lChoBkdAZ2+ywfQrtmgHTegDaAhHQKlKVBnBciZ1fZQoaAZHQGOw9g4OtnxoB03oA2gIR0CpSpgUDdP+dX2UKGgGR0BlyEspXp4baAdN6ANoCEdAqVYdVvMr3HV9lChoBkdAYksAG0NSZWgHTegDaAhHQKlWVs67ulZ1fZQoaAZHQGWHgZbY9PloB03oA2gIR0CpV26fzz3AdX2UKGgGR0BRQ2YWtU4raAdL82gIR0CpWCvwVj7RdX2UKGgGR0BPaJnQID5kaAdNKQFoCEdAqVngsAeaKHV9lChoBkdAYpcTlDF6zGgHTegDaAhHQKleTckdFOR1fZQoaAZHQGIuGgSOBDpoB03oA2gIR0CpYPnBLwnZdX2UKGgGR0BHCUwztTkyaAdNFQFoCEdAqWQbjkuHvnV9lChoBkdAZPN+KjzqbGgHTegDaAhHQKlkZc8DB/J1fZQoaAZHQG5BGjj7yhBoB007A2gIR0CpZNkX1rZbdX2UKGgGR0BiVenhsImgaAdN6ANoCEdAqWfLqOcUd3V9lChoBkdAPD0bT+ee4GgHS9NoCEdAqWql9ph4MXV9lChoBkdAZmXIPK+zt2gHTegDaAhHQKlrBG5MDfZ1fZQoaAZHQGaz0wSJ0nxoB03oA2gIR0Cpa5rSVnmJdX2UKGgGR0BxVPaCcwxnaAdNUAJoCEdAqWuvUWl/IHV9lChoBkdAQSkPz4DcM2gHS/BoCEdAqWv7DEWIoHV9lChoBkdAZWU3bVSXMWgHTegDaAhHQKlsZFrl/6R1fZQoaAZHQGVk+lsP8Q9oB03oA2gIR0CpbJqFRHf/dX2UKGgGR0BlOVFfAsTWaAdN6ANoCEdAqXHZZyMkyHV9lChoBkdAZJQXu3MINWgHTegDaAhHQKlyQnIhhYx1fZQoaAZHQGOtiCBf8dhoB03oA2gIR0CpgKC3gDRudX2UKGgGR0BhnG7HyVfNaAdN6ANoCEdAqYETT+ee4HV9lChoBkdAZ2EcI7eVLWgHTegDaAhHQKmDaGpMpPR1fZQoaAZHQGThJJoTPB1oB03oA2gIR0CpiyHggow3dX2UKGgGR0BmeCp3os7NaAdN6ANoCEdAqY+sPz4DcXV9lChoBkdAY/EB06o2oGgHTegDaAhHQKmTUDvE0i11fZQoaAZHQGOREfDDTBtoB03oA2gIR0Cplsm51/2CdX2UKGgGR0Bj7Jf8dgfEaAdN6ANoCEdAqZqwxrSE13V9lChoBkdAZVJiy6cy32gHTegDaAhHQKmbJbr1M/R1fZQoaAZHQGPNemFajetoB03oA2gIR0Cpm9/2K2rodX2UKGgGR0BhcbjT8YQ8aAdN6ANoCEdAqZv6cf/3nXV9lChoBkdAYzzvH93r2WgHTegDaAhHQKmcWESM98t1fZQoaAZHQGKnpp35eqtoB03oA2gIR0CpnNQKa5PNdX2UKGgGR0BgOpoPCl7/aAdN6ANoCEdAqZ0r19ORDHV9lChoBkdANeeMQ2/BWWgHS8hoCEdAqaFglByCF3V9lChoBkdAX26vHLida2gHTegDaAhHQKmi33pwCKd1fZQoaAZHQF4B6y0KJEZoB03oA2gIR0Cpoy8GC7K8dX2UKGgGR0Br5sdtEXtTaAdNJAFoCEdAqaNrdP+GXXVlLg=="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 248,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dd0a6e2af54c6902add69a5c1887551a4caf85c340641245dc0361609f27f818
3
+ size 88362
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c563e1cdd84100cdef2d82d5f17a5bc556469c12df615969e97df1105d58d4d1
3
+ size 43762
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.1.0+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (192 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 221.56302, "std_reward": 48.572108365593756, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-01-23T17:25:29.679443"}