Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: mit
|
3 |
---
|
|
|
1 |
+
### SegFormer Finetuned for Seal Segmentation
|
2 |
+
|
3 |
+
#### BaseOn https://huggingface.co/nvidia/mit-b0
|
4 |
+
|
5 |
+
|
6 |
+
#### How to use
|
7 |
+
Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes:
|
8 |
+
|
9 |
+
```
|
10 |
+
from transformers import AutoImageProcessor, SegformerForSemanticSegmentation
|
11 |
+
from PIL import Image
|
12 |
+
import requests
|
13 |
+
|
14 |
+
image_processor = AutoImageProcessor.from_pretrained("Fantast/segformer-mit-b0-finetuned-for-seal")
|
15 |
+
model = SegformerForSemanticSegmentation.from_pretrained("Fantast/segformer-mit-b0-finetuned-for-seal")
|
16 |
+
|
17 |
+
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
18 |
+
image = Image.open(requests.get(url, stream=True).raw)
|
19 |
+
|
20 |
+
inputs = image_processor(images=image, return_tensors="pt")
|
21 |
+
outputs = model(**inputs)
|
22 |
+
logits = outputs.logits # shape (batch_size, num_labels, height/4, width/4)
|
23 |
+
list(logits.shape)
|
24 |
+
```
|
25 |
+
|
26 |
+
For more code examples, we refer to the documentation.
|
27 |
+
|
28 |
+
License
|
29 |
+
The license for this model can be found here.
|
30 |
+
|
31 |
+
BibTeX entry and citation info
|
32 |
+
@article{DBLP:journals/corr/abs-2105-15203,
|
33 |
+
author = {Enze Xie and
|
34 |
+
Wenhai Wang and
|
35 |
+
Zhiding Yu and
|
36 |
+
Anima Anandkumar and
|
37 |
+
Jose M. Alvarez and
|
38 |
+
Ping Luo},
|
39 |
+
title = {SegFormer: Simple and Efficient Design for Semantic Segmentation with
|
40 |
+
Transformers},
|
41 |
+
journal = {CoRR},
|
42 |
+
volume = {abs/2105.15203},
|
43 |
+
year = {2021},
|
44 |
+
url = {https://arxiv.org/abs/2105.15203},
|
45 |
+
eprinttype = {arXiv},
|
46 |
+
eprint = {2105.15203},
|
47 |
+
timestamp = {Wed, 02 Jun 2021 11:46:42 +0200},
|
48 |
+
biburl = {https://dblp.org/rec/journals/corr/abs-2105-15203.bib},
|
49 |
+
bibsource = {dblp computer science bibliography, https://dblp.org}
|
50 |
+
}
|
51 |
+
|
52 |
---
|
53 |
license: mit
|
54 |
---
|