FareedKhan commited on
Commit
67c3f86
1 Parent(s): de5dbb1

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,649 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: TaylorAI/bge-micro-v2
3
+ library_name: sentence-transformers
4
+ metrics:
5
+ - cosine_accuracy@1
6
+ - cosine_accuracy@3
7
+ - cosine_accuracy@5
8
+ - cosine_accuracy@10
9
+ - cosine_precision@1
10
+ - cosine_precision@3
11
+ - cosine_precision@5
12
+ - cosine_precision@10
13
+ - cosine_recall@1
14
+ - cosine_recall@3
15
+ - cosine_recall@5
16
+ - cosine_recall@10
17
+ - cosine_ndcg@10
18
+ - cosine_mrr@10
19
+ - cosine_map@100
20
+ pipeline_tag: sentence-similarity
21
+ tags:
22
+ - sentence-transformers
23
+ - sentence-similarity
24
+ - feature-extraction
25
+ - generated_from_trainer
26
+ - dataset_size:1814
27
+ - loss:MatryoshkaLoss
28
+ - loss:MultipleNegativesRankingLoss
29
+ widget:
30
+ - source_sentence: '
31
+
32
+ The list you''ve provided contains a variety of medications, including antidepressants,
33
+ antihistamines, anxiolytics, and more. Here''s a breakdown by category:
34
+
35
+
36
+ ### Antidepressants
37
+
38
+ - **Amphetamine**
39
+
40
+ - **Cevimeline**
41
+
42
+ - **Esmolol**
43
+
44
+ - **Bortezomib**
45
+
46
+ - **'
47
+ sentences:
48
+ - Which body parts are associated with the expression of genes or proteins that
49
+ impact the transporter responsible for the movement of Cycloserine?
50
+ - Identify genes or proteins that interact with a protein threonine kinase, participate
51
+ in the mitotic centrosome proteins and complexes recruitment pathway, and engage
52
+ in protein-protein interactions with CCT2.
53
+ - Which medication is effective against simple Plasmodium falciparum infections
54
+ and functions by engaging with genes or proteins that interact with the minor
55
+ groove of DNA rich in adenine and thymine?
56
+ - source_sentence: '
57
+
58
+ RNASE6, also known by aliases such as RAD1, RNS6, and RNasek6, functions as a
59
+ member of the ribonuclease A superfamily. Specifically identified via the NCBI
60
+ gene/protein database, this protein is related to the antimicrobial peptides pathway,
61
+ showcasing broad-spectrum antimicrobial activity against pathogenic bacteria in
62
+ the urinary tract. The provided gene summary emphasizes its role in the urinary
63
+ tract, highlighting its enzymatic function and broad antimicrobial capability.
64
+
65
+
66
+ With a genomic position spanning from 20781268 to 20782467 on chromosome 14, the
67
+ RNASE6 gene encodes a protein named ribonuclease A family member k6. The protein''s
68
+ interactions with cellular and molecular functions are integral to its role, including
69
+ its interaction with molecular functions like ribonuclease activity and endonuclease
70
+ activity, as well as its involvement in nucleic acid binding.
71
+
72
+
73
+ RNASE6''s involvement in biological'
74
+ sentences:
75
+ - Identify genes or proteins linked to encephalopathy that are involved in the Antimicrobial
76
+ peptides pathway and have interactions with molecular functions associated with
77
+ ribonuclease activity.
78
+ - Identify genes or proteins that exhibit interaction with COMMD1 and share an associated
79
+ phenotype or effect.
80
+ - What medical conditions are associated with severe combined immunodeficiency and
81
+ also cause muscle pain and weakness?
82
+ - source_sentence: '
83
+
84
+
85
+ The gene in question is likely involved in multiple biological processes, including:
86
+
87
+
88
+ 1. **Transmembrane transport**: It facilitates the entry of substances into or
89
+ out of a cell through the cell membrane, which is crucial for maintaining cellular
90
+ homeostasis and responding to environmental stimuli. This includes organic anion
91
+ and carboxylic acid transport.
92
+
93
+
94
+ 2. **ABC-family proteins mediated transport**: ABC (or ATP-binding cassette) proteins
95
+ are responsible for a variety of transport processes, such as drug efflux, nutrient
96
+ uptake, and xenobiotic detoxification.
97
+
98
+
99
+ 3. **Response to drug**: It likely plays a role in how cells interact with and
100
+ respond to medication or other foreign substances they encounter. This is important
101
+ in pharmacology and toxicology.
102
+
103
+
104
+ 4. **Regulation of chloride transport**: Chloride ions are crucial for maintaining
105
+ electrolyte balance and are involved in multiple physiological processes. This
106
+ gene likely helps regulate their transport in and out of the cell.
107
+
108
+
109
+ 5. **Export across plasma membrane**: It is part of pathways that help in the
110
+ removal of substances from the cell, such as efflux of drug metabolites or other
111
+ waste products.
112
+
113
+
114
+ ### Expression Contexts:
115
+
116
+
117
+ - **Present**: This gene is expressed in many parts of the body, indicating a
118
+ broad role. It shows presence in tissues like the islet of Langerhans (involved
119
+ in insulin regulation), zones of the skin, and various brain regions. It''s also
120
+ active in organs such as the heart, kidney, and lungs, and in the digestive tract,
121
+ including the stomach, esophagus, and intestines.
122
+
123
+
124
+ - **Absent or Reduced**: The gene''s expression is notably absent or less pronounced
125
+ in tissues like the nasal cavity epithelium, suggesting it may not play a significant
126
+ role in this specific tissue type.
127
+
128
+
129
+ The gene''s multifaceted expression and roles suggest a key function in biological
130
+ activities related to:
131
+
132
+ - **Chemical'
133
+ sentences:
134
+ - Could you supply a selection of medications used to treat acute myeloid leukemia
135
+ with minimal differentiation that have a potential side effect of arrhythmias
136
+ and work by intercalating DNA and inhibiting topoisomerase II?
137
+ - Is the ABCB1 protein responsible for the translocation of pharmaceuticals that
138
+ exhibit synergistic effects when combined with ferric ions?
139
+ - What potential conditions could I have that are associated with oophoritis and
140
+ involve ovarian complications?
141
+ - source_sentence: "\n\nThe list you provided seems to be a collection of various\
142
+ \ chemical compounds, pharmaceuticals, and their synonyms. They span across various\
143
+ \ categories:\n\n1. **Pharmaceuticals & Synthetic Drug Analogs**:\n - **Antibiotics**\
144
+ \ (Ceftazidime, Azithromycin, Ceftodipen, etc.)\n - **Analgesics** (Fentanyl,\
145
+ \ Ketorolac, etc.)\n - **Cephalosporins** (Ceftazidime, Ceftazidime-avibactam,\
146
+ \ etc.)\n - **Blood Thinners/Synthetic Anticoagulants** (Enoxaparin, Edoxaban,\
147
+ \ Rivaroxaban, etc.)\n - **Analgesic/Aspirin Analogues** (Mefenamic Acid, Indometacin,\
148
+ \ etc.)\n - **Adrenergic Agonists** (Isoprenaline, Dopamine, etc.)\n - **Antiviral\
149
+ \ Drugs** (Adefovir, Idelalisib, etc.)\n - **Antibiotic Resistance Modifiers**\
150
+ \ (Sulbactam, Tazobactam, etc.)\n - **Calcium Channel Blockers** (Verapamil,\
151
+ \ Nicardipine, etc.)\n - **Nutraceuticals/Herbal Extracts** (Ginsenoside, Phloretin,\
152
+ \ etc.)\n \n2. **Diagnostic Agents**:\n - **Radiopharmaceuticals** (F-Fluorodeoxyglucose,\
153
+ \ Ga-68 DOTATOC, etc.)\n - **MRI Contrasts** (Gadolinium chelates, etc.)\n\
154
+ \ - **CT Contrast Agents** (Iodinated contrast agents, etc.)\n \n3. **Ingredients\
155
+ \ in Drugs**:\n - **Excipients** (Hydroxypropylmethylcellulose, Lactose, etc.)\n\
156
+ \ - **Antifungal Drugs** (Itraconazole, Terconazole, etc.)\n - **Anticoagulants**\
157
+ \ (Warfarin, Heparin, etc.)\n \nThis list represents a broad spectrum of\
158
+ \ modern medicine, from antibiotics to chemicals used in diagnostic imaging techniques,\
159
+ \ and from dietary supplements to drug excipients. Each compound typically serves\
160
+ \ a specific therapeutic purpose in the human body."
161
+ sentences:
162
+ - Which investigational compound in solid form that aims at altering membrane lipids,
163
+ specifically phospholipids and glycerophospholipids, has the additional property
164
+ of interacting with genes or proteins involved in ubiquitin-specific protease
165
+ binding?
166
+ - Could you provide a list of medications that exhibit synergistic effects when
167
+ used in combination with Choline magnesium trisalicylate to treat the same condition
168
+ and that also selectively target COX-2 enzymes to alleviate inflammation?
169
+ - Identify pathways associated with the interaction between TNFs and their physiological
170
+ receptors that concurrently influence the same gene or protein.
171
+ - source_sentence: "\n\nDiarrhea, a condition characterized by the passage of loose,\
172
+ \ watery, and often more than five times a day, is a common ailment affecting\
173
+ \ individuals of all ages. It is typically acute when it lasts for a few days\
174
+ \ to a week or recurrent when it persists for more than four weeks. While acute\
175
+ \ diarrhea often resolves on its own and is usually not a cause for concern, recurrent\
176
+ \ or chronic forms require medical attention due to the risk of dehydration and\
177
+ \ nutrient deficiencies. \n\n### Causes\n\nDiarrhea can be caused by various factors,\
178
+ \ including:\n\n1. **Viral"
179
+ sentences:
180
+ - Could you describe the specific effects or phenotypes associated with acute hydrops
181
+ in patients with the subtype of keratoconus?
182
+ - What is the disease associated with the CPT2 gene that causes severe fasting intolerance
183
+ leading to metabolic disturbances such as hypoketotic hypoglycemia, risking coma
184
+ and seizures, and can lead to hepatic encephalopathy and liver failure, and also
185
+ affects the heart and skeletal muscles, increasing the risk of potentially fatal
186
+ cardiac arrhythmias?
187
+ - Could you assist in identifying a condition linked to congenital secretory diarrhea,
188
+ similar to intractable diarrhea of infancy, given my symptoms of persistent, salty
189
+ watery diarrhea, hyponatremia, abnormal body pH, and reliance on parenteral nutrition
190
+ due to chronic dehydration?
191
+ model-index:
192
+ - name: SentenceTransformer based on TaylorAI/bge-micro-v2
193
+ results:
194
+ - task:
195
+ type: information-retrieval
196
+ name: Information Retrieval
197
+ dataset:
198
+ name: dim 384
199
+ type: dim_384
200
+ metrics:
201
+ - type: cosine_accuracy@1
202
+ value: 0.36633663366336633
203
+ name: Cosine Accuracy@1
204
+ - type: cosine_accuracy@3
205
+ value: 0.45544554455445546
206
+ name: Cosine Accuracy@3
207
+ - type: cosine_accuracy@5
208
+ value: 0.4801980198019802
209
+ name: Cosine Accuracy@5
210
+ - type: cosine_accuracy@10
211
+ value: 0.504950495049505
212
+ name: Cosine Accuracy@10
213
+ - type: cosine_precision@1
214
+ value: 0.36633663366336633
215
+ name: Cosine Precision@1
216
+ - type: cosine_precision@3
217
+ value: 0.1518151815181518
218
+ name: Cosine Precision@3
219
+ - type: cosine_precision@5
220
+ value: 0.09603960396039603
221
+ name: Cosine Precision@5
222
+ - type: cosine_precision@10
223
+ value: 0.05049504950495049
224
+ name: Cosine Precision@10
225
+ - type: cosine_recall@1
226
+ value: 0.36633663366336633
227
+ name: Cosine Recall@1
228
+ - type: cosine_recall@3
229
+ value: 0.45544554455445546
230
+ name: Cosine Recall@3
231
+ - type: cosine_recall@5
232
+ value: 0.4801980198019802
233
+ name: Cosine Recall@5
234
+ - type: cosine_recall@10
235
+ value: 0.504950495049505
236
+ name: Cosine Recall@10
237
+ - type: cosine_ndcg@10
238
+ value: 0.4371640266541694
239
+ name: Cosine Ndcg@10
240
+ - type: cosine_mrr@10
241
+ value: 0.4153524280999529
242
+ name: Cosine Mrr@10
243
+ - type: cosine_map@100
244
+ value: 0.42164032403755497
245
+ name: Cosine Map@100
246
+ ---
247
+
248
+ # SentenceTransformer based on TaylorAI/bge-micro-v2
249
+
250
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [TaylorAI/bge-micro-v2](https://huggingface.co/TaylorAI/bge-micro-v2) on the json dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
251
+
252
+ ## Model Details
253
+
254
+ ### Model Description
255
+ - **Model Type:** Sentence Transformer
256
+ - **Base model:** [TaylorAI/bge-micro-v2](https://huggingface.co/TaylorAI/bge-micro-v2) <!-- at revision 3edf6d7de0faa426b09780416fe61009f26ae589 -->
257
+ - **Maximum Sequence Length:** 512 tokens
258
+ - **Output Dimensionality:** 384 tokens
259
+ - **Similarity Function:** Cosine Similarity
260
+ - **Training Dataset:**
261
+ - json
262
+ <!-- - **Language:** Unknown -->
263
+ <!-- - **License:** Unknown -->
264
+
265
+ ### Model Sources
266
+
267
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
268
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
269
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
270
+
271
+ ### Full Model Architecture
272
+
273
+ ```
274
+ SentenceTransformer(
275
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
276
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
277
+ )
278
+ ```
279
+
280
+ ## Usage
281
+
282
+ ### Direct Usage (Sentence Transformers)
283
+
284
+ First install the Sentence Transformers library:
285
+
286
+ ```bash
287
+ pip install -U sentence-transformers
288
+ ```
289
+
290
+ Then you can load this model and run inference.
291
+ ```python
292
+ from sentence_transformers import SentenceTransformer
293
+
294
+ # Download from the 🤗 Hub
295
+ model = SentenceTransformer("FareedKhan/TaylorAI_bge-micro-v2_FareedKhan_prime_synthetic_data_2k_10_64")
296
+ # Run inference
297
+ sentences = [
298
+ '\n\nDiarrhea, a condition characterized by the passage of loose, watery, and often more than five times a day, is a common ailment affecting individuals of all ages. It is typically acute when it lasts for a few days to a week or recurrent when it persists for more than four weeks. While acute diarrhea often resolves on its own and is usually not a cause for concern, recurrent or chronic forms require medical attention due to the risk of dehydration and nutrient deficiencies. \n\n### Causes\n\nDiarrhea can be caused by various factors, including:\n\n1. **Viral',
299
+ 'Could you assist in identifying a condition linked to congenital secretory diarrhea, similar to intractable diarrhea of infancy, given my symptoms of persistent, salty watery diarrhea, hyponatremia, abnormal body pH, and reliance on parenteral nutrition due to chronic dehydration?',
300
+ 'Could you describe the specific effects or phenotypes associated with acute hydrops in patients with the subtype of keratoconus?',
301
+ ]
302
+ embeddings = model.encode(sentences)
303
+ print(embeddings.shape)
304
+ # [3, 384]
305
+
306
+ # Get the similarity scores for the embeddings
307
+ similarities = model.similarity(embeddings, embeddings)
308
+ print(similarities.shape)
309
+ # [3, 3]
310
+ ```
311
+
312
+ <!--
313
+ ### Direct Usage (Transformers)
314
+
315
+ <details><summary>Click to see the direct usage in Transformers</summary>
316
+
317
+ </details>
318
+ -->
319
+
320
+ <!--
321
+ ### Downstream Usage (Sentence Transformers)
322
+
323
+ You can finetune this model on your own dataset.
324
+
325
+ <details><summary>Click to expand</summary>
326
+
327
+ </details>
328
+ -->
329
+
330
+ <!--
331
+ ### Out-of-Scope Use
332
+
333
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
334
+ -->
335
+
336
+ ## Evaluation
337
+
338
+ ### Metrics
339
+
340
+ #### Information Retrieval
341
+ * Dataset: `dim_384`
342
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
343
+
344
+ | Metric | Value |
345
+ |:--------------------|:-----------|
346
+ | cosine_accuracy@1 | 0.3663 |
347
+ | cosine_accuracy@3 | 0.4554 |
348
+ | cosine_accuracy@5 | 0.4802 |
349
+ | cosine_accuracy@10 | 0.505 |
350
+ | cosine_precision@1 | 0.3663 |
351
+ | cosine_precision@3 | 0.1518 |
352
+ | cosine_precision@5 | 0.096 |
353
+ | cosine_precision@10 | 0.0505 |
354
+ | cosine_recall@1 | 0.3663 |
355
+ | cosine_recall@3 | 0.4554 |
356
+ | cosine_recall@5 | 0.4802 |
357
+ | cosine_recall@10 | 0.505 |
358
+ | cosine_ndcg@10 | 0.4372 |
359
+ | cosine_mrr@10 | 0.4154 |
360
+ | **cosine_map@100** | **0.4216** |
361
+
362
+ <!--
363
+ ## Bias, Risks and Limitations
364
+
365
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
366
+ -->
367
+
368
+ <!--
369
+ ### Recommendations
370
+
371
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
372
+ -->
373
+
374
+ ## Training Details
375
+
376
+ ### Training Dataset
377
+
378
+ #### json
379
+
380
+ * Dataset: json
381
+ * Size: 1,814 training samples
382
+ * Columns: <code>positive</code> and <code>anchor</code>
383
+ * Approximate statistics based on the first 1000 samples:
384
+ | | positive | anchor |
385
+ |:--------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
386
+ | type | string | string |
387
+ | details | <ul><li>min: 2 tokens</li><li>mean: 249.7 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 13 tokens</li><li>mean: 35.54 tokens</li><li>max: 135 tokens</li></ul> |
388
+ * Samples:
389
+ | positive | anchor |
390
+ |:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
391
+ | <code><br>The list you provided appears to be a collection of various substances and medications, each with its own unique properties and uses. Here's a brief overview of each:<br><br>1. **Abacavir**<br> - Used in HIV treatment, it inhibits reverse transcriptase.<br><br>2. **Abate**<br> - Often refers to fenpyroximate, used as an insecticide.<br><br>3. **Abidaquine**<br> - An antimalarial drug used to treat and prevent malaria.<br><br>4. **Abiraterone**<br> - Used in treating prostate cancer, specifically to block the production of testosterone.<br><br>5. **Abiraterone alfa**<br> - Similar to abiraterone, used in prostate cancer treatment.<br><br>6. **Abiraterone acetate**<br> - An active form of abiraterone.<br><br>7. **Abiraterone citrate**<br> - Another form of abiraterone.<br><br>8. **Acelprozil**<br> - A medication commonly used as an anti-epileptic drug.<br><br>9. **Acenocoumarol**<br> - Used as a blood thinner, also known as a vitamin K antagonist.<br><br>10. **Acenocoumarol citrate**<br> - Same as acenocoumarol but with citrate, functioning similarly as a</code> | <code>Which pharmacological agents with antioxidant properties have the potential to disrupt the PCSK9-LDLR interaction by affecting the gene or protein players in this pathway?</code> |
392
+ | <code><br>Bartholin duct cyst is a gynecological condition characterized by the distension of Bartholin glands due to mucus accumulation within the ducts, typically resulting from an obstructed orifice. This issue, categorized under women's reproductive health, falls directly under the umbrella of both integumentary system diseases and female reproductive system diseases. Originating from the Bartholin glands, which play a pivotal role in lubrication and arousal of the vulva during intercourse, the blockage or obstruction leads to cyst formation, affecting the overall female reproductive health landscape.</code> | <code>What is the name of the gynecological condition that arises due to blocked Bartholin's glands and involves cyst formation, falling under the broader category of women's reproductive health issues?</code> |
393
+ | <code><br>Neuralgia, as defined by the MONDO ontology, refers to a pain disorder characterized by pain in the distribution of a nerve or nerves. This condition could be associated with the use of Capsaicin cream, given its known capability to alleviate symptoms by causing a temporary sensation of pain that interferes with the perception of more severe pain. Peripheral neuropathy, another symptom, is often manifest in cases where nerve damage occurs, frequently affecting multiple nerves. This condition can result in symptoms similar to sciatica, which is characterized by pain that starts in the lower back, often radiating down the leg, a common route for the sciatic nerve. The document indicates that diseases related to neuralgia include pudendal neuralgia, peripheral neuropathy, disorders involving pain, cranial neuralgia, post-infectious neuralgia, and sciatica. Furthermore, the document mentions several drugs that can be used for the purpose of managing symptoms related to neuralgia, including Lidocaine, as well as a wide array of off-label uses for treatments like Phenytoin, Morphine, Amitriptyline, Imipramine, Oxycodone, Nortriptyline, Lamotrigine, Maprotiline, Desipramine, Gabapentin, Carbamazepine, Phenobarbital, Tramadol, Venlafaxine, Trimipramine, Desvenlafaxine, Primidone, and Naltrexone.</code> | <code>What condition could be associated with the use of Capsaicin cream, peripheral neuropathy, and symptoms similar to sciatica?</code> |
394
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
395
+ ```json
396
+ {
397
+ "loss": "MultipleNegativesRankingLoss",
398
+ "matryoshka_dims": [
399
+ 384
400
+ ],
401
+ "matryoshka_weights": [
402
+ 1
403
+ ],
404
+ "n_dims_per_step": -1
405
+ }
406
+ ```
407
+
408
+ ### Training Hyperparameters
409
+ #### Non-Default Hyperparameters
410
+
411
+ - `eval_strategy`: epoch
412
+ - `per_device_train_batch_size`: 64
413
+ - `learning_rate`: 1e-05
414
+ - `num_train_epochs`: 10
415
+ - `warmup_ratio`: 0.1
416
+ - `bf16`: True
417
+ - `tf32`: False
418
+ - `load_best_model_at_end`: True
419
+
420
+ #### All Hyperparameters
421
+ <details><summary>Click to expand</summary>
422
+
423
+ - `overwrite_output_dir`: False
424
+ - `do_predict`: False
425
+ - `eval_strategy`: epoch
426
+ - `prediction_loss_only`: True
427
+ - `per_device_train_batch_size`: 64
428
+ - `per_device_eval_batch_size`: 8
429
+ - `per_gpu_train_batch_size`: None
430
+ - `per_gpu_eval_batch_size`: None
431
+ - `gradient_accumulation_steps`: 1
432
+ - `eval_accumulation_steps`: None
433
+ - `torch_empty_cache_steps`: None
434
+ - `learning_rate`: 1e-05
435
+ - `weight_decay`: 0.0
436
+ - `adam_beta1`: 0.9
437
+ - `adam_beta2`: 0.999
438
+ - `adam_epsilon`: 1e-08
439
+ - `max_grad_norm`: 1.0
440
+ - `num_train_epochs`: 10
441
+ - `max_steps`: -1
442
+ - `lr_scheduler_type`: linear
443
+ - `lr_scheduler_kwargs`: {}
444
+ - `warmup_ratio`: 0.1
445
+ - `warmup_steps`: 0
446
+ - `log_level`: passive
447
+ - `log_level_replica`: warning
448
+ - `log_on_each_node`: True
449
+ - `logging_nan_inf_filter`: True
450
+ - `save_safetensors`: True
451
+ - `save_on_each_node`: False
452
+ - `save_only_model`: False
453
+ - `restore_callback_states_from_checkpoint`: False
454
+ - `no_cuda`: False
455
+ - `use_cpu`: False
456
+ - `use_mps_device`: False
457
+ - `seed`: 42
458
+ - `data_seed`: None
459
+ - `jit_mode_eval`: False
460
+ - `use_ipex`: False
461
+ - `bf16`: True
462
+ - `fp16`: False
463
+ - `fp16_opt_level`: O1
464
+ - `half_precision_backend`: auto
465
+ - `bf16_full_eval`: False
466
+ - `fp16_full_eval`: False
467
+ - `tf32`: False
468
+ - `local_rank`: 0
469
+ - `ddp_backend`: None
470
+ - `tpu_num_cores`: None
471
+ - `tpu_metrics_debug`: False
472
+ - `debug`: []
473
+ - `dataloader_drop_last`: False
474
+ - `dataloader_num_workers`: 0
475
+ - `dataloader_prefetch_factor`: None
476
+ - `past_index`: -1
477
+ - `disable_tqdm`: False
478
+ - `remove_unused_columns`: True
479
+ - `label_names`: None
480
+ - `load_best_model_at_end`: True
481
+ - `ignore_data_skip`: False
482
+ - `fsdp`: []
483
+ - `fsdp_min_num_params`: 0
484
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
485
+ - `fsdp_transformer_layer_cls_to_wrap`: None
486
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
487
+ - `deepspeed`: None
488
+ - `label_smoothing_factor`: 0.0
489
+ - `optim`: adamw_torch
490
+ - `optim_args`: None
491
+ - `adafactor`: False
492
+ - `group_by_length`: False
493
+ - `length_column_name`: length
494
+ - `ddp_find_unused_parameters`: None
495
+ - `ddp_bucket_cap_mb`: None
496
+ - `ddp_broadcast_buffers`: False
497
+ - `dataloader_pin_memory`: True
498
+ - `dataloader_persistent_workers`: False
499
+ - `skip_memory_metrics`: True
500
+ - `use_legacy_prediction_loop`: False
501
+ - `push_to_hub`: False
502
+ - `resume_from_checkpoint`: None
503
+ - `hub_model_id`: None
504
+ - `hub_strategy`: every_save
505
+ - `hub_private_repo`: False
506
+ - `hub_always_push`: False
507
+ - `gradient_checkpointing`: False
508
+ - `gradient_checkpointing_kwargs`: None
509
+ - `include_inputs_for_metrics`: False
510
+ - `eval_do_concat_batches`: True
511
+ - `fp16_backend`: auto
512
+ - `push_to_hub_model_id`: None
513
+ - `push_to_hub_organization`: None
514
+ - `mp_parameters`:
515
+ - `auto_find_batch_size`: False
516
+ - `full_determinism`: False
517
+ - `torchdynamo`: None
518
+ - `ray_scope`: last
519
+ - `ddp_timeout`: 1800
520
+ - `torch_compile`: False
521
+ - `torch_compile_backend`: None
522
+ - `torch_compile_mode`: None
523
+ - `dispatch_batches`: None
524
+ - `split_batches`: None
525
+ - `include_tokens_per_second`: False
526
+ - `include_num_input_tokens_seen`: False
527
+ - `neftune_noise_alpha`: None
528
+ - `optim_target_modules`: None
529
+ - `batch_eval_metrics`: False
530
+ - `eval_on_start`: False
531
+ - `use_liger_kernel`: False
532
+ - `eval_use_gather_object`: False
533
+ - `batch_sampler`: batch_sampler
534
+ - `multi_dataset_batch_sampler`: proportional
535
+
536
+ </details>
537
+
538
+ ### Training Logs
539
+ | Epoch | Step | Training Loss | dim_384_cosine_map@100 |
540
+ |:-------:|:-------:|:-------------:|:----------------------:|
541
+ | 0 | 0 | - | 0.3737 |
542
+ | 0.3448 | 10 | 2.4936 | - |
543
+ | 0.6897 | 20 | 2.4873 | - |
544
+ | 1.0 | 29 | - | 0.3917 |
545
+ | 1.0345 | 30 | 2.1624 | - |
546
+ | 1.3793 | 40 | 2.0774 | - |
547
+ | 1.7241 | 50 | 1.973 | - |
548
+ | 2.0 | 58 | - | 0.4065 |
549
+ | 2.0690 | 60 | 1.8545 | - |
550
+ | 2.4138 | 70 | 1.8635 | - |
551
+ | 2.7586 | 80 | 1.8483 | - |
552
+ | 3.0 | 87 | - | 0.4167 |
553
+ | 3.1034 | 90 | 1.764 | - |
554
+ | 3.4483 | 100 | 1.744 | - |
555
+ | 3.7931 | 110 | 1.8287 | - |
556
+ | 4.0 | 116 | - | 0.4212 |
557
+ | 4.1379 | 120 | 1.574 | - |
558
+ | 4.4828 | 130 | 1.6807 | - |
559
+ | 4.8276 | 140 | 1.7146 | - |
560
+ | 5.0 | 145 | - | 0.4222 |
561
+ | 5.1724 | 150 | 1.5898 | - |
562
+ | 5.5172 | 160 | 1.6352 | - |
563
+ | 5.8621 | 170 | 1.6344 | - |
564
+ | 6.0 | 174 | - | 0.4183 |
565
+ | 6.2069 | 180 | 1.5556 | - |
566
+ | 6.5517 | 190 | 1.6743 | - |
567
+ | 6.8966 | 200 | 1.5934 | - |
568
+ | 7.0 | 203 | - | 0.4199 |
569
+ | 7.2414 | 210 | 1.4956 | - |
570
+ | 7.5862 | 220 | 1.5644 | - |
571
+ | 7.9310 | 230 | 1.5856 | - |
572
+ | **8.0** | **232** | **-** | **0.4215** |
573
+ | 8.2759 | 240 | 1.4328 | - |
574
+ | 8.6207 | 250 | 1.6208 | - |
575
+ | 8.9655 | 260 | 1.57 | - |
576
+ | 9.0 | 261 | - | 0.4216 |
577
+ | 9.3103 | 270 | 1.6354 | - |
578
+ | 9.6552 | 280 | 1.5414 | - |
579
+ | 10.0 | 290 | 1.3757 | 0.4216 |
580
+
581
+ * The bold row denotes the saved checkpoint.
582
+
583
+ ### Framework Versions
584
+ - Python: 3.10.10
585
+ - Sentence Transformers: 3.1.1
586
+ - Transformers: 4.45.1
587
+ - PyTorch: 2.2.1+cu121
588
+ - Accelerate: 0.34.2
589
+ - Datasets: 3.0.1
590
+ - Tokenizers: 0.20.0
591
+
592
+ ## Citation
593
+
594
+ ### BibTeX
595
+
596
+ #### Sentence Transformers
597
+ ```bibtex
598
+ @inproceedings{reimers-2019-sentence-bert,
599
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
600
+ author = "Reimers, Nils and Gurevych, Iryna",
601
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
602
+ month = "11",
603
+ year = "2019",
604
+ publisher = "Association for Computational Linguistics",
605
+ url = "https://arxiv.org/abs/1908.10084",
606
+ }
607
+ ```
608
+
609
+ #### MatryoshkaLoss
610
+ ```bibtex
611
+ @misc{kusupati2024matryoshka,
612
+ title={Matryoshka Representation Learning},
613
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
614
+ year={2024},
615
+ eprint={2205.13147},
616
+ archivePrefix={arXiv},
617
+ primaryClass={cs.LG}
618
+ }
619
+ ```
620
+
621
+ #### MultipleNegativesRankingLoss
622
+ ```bibtex
623
+ @misc{henderson2017efficient,
624
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
625
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
626
+ year={2017},
627
+ eprint={1705.00652},
628
+ archivePrefix={arXiv},
629
+ primaryClass={cs.CL}
630
+ }
631
+ ```
632
+
633
+ <!--
634
+ ## Glossary
635
+
636
+ *Clearly define terms in order to be accessible across audiences.*
637
+ -->
638
+
639
+ <!--
640
+ ## Model Card Authors
641
+
642
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
643
+ -->
644
+
645
+ <!--
646
+ ## Model Card Contact
647
+
648
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
649
+ -->
config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/teamspace/studios/this_studio/TaylorAI_bge-micro-v2_FareedKhan_prime_synthetic_data_2k_10_64/finetuned_model",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 384,
11
+ "id2label": {
12
+ "0": "LABEL_0"
13
+ },
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 1536,
16
+ "label2id": {
17
+ "LABEL_0": 0
18
+ },
19
+ "layer_norm_eps": 1e-12,
20
+ "max_position_embeddings": 512,
21
+ "model_type": "bert",
22
+ "num_attention_heads": 12,
23
+ "num_hidden_layers": 3,
24
+ "pad_token_id": 0,
25
+ "position_embedding_type": "absolute",
26
+ "torch_dtype": "float32",
27
+ "transformers_version": "4.45.1",
28
+ "type_vocab_size": 2,
29
+ "use_cache": true,
30
+ "vocab_size": 30522
31
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.1",
4
+ "transformers": "4.45.1",
5
+ "pytorch": "2.2.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a2f32d0a289cbe37ee9e4ca37e6da0d69d45d4a30db271e5eb87abf79d3a5459
3
+ size 69565312
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "[PAD]",
4
+ "[UNK]",
5
+ "[CLS]",
6
+ "[SEP]",
7
+ "[MASK]"
8
+ ],
9
+ "cls_token": {
10
+ "content": "[CLS]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "mask_token": {
17
+ "content": "[MASK]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "pad_token": {
24
+ "content": "[PAD]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "sep_token": {
31
+ "content": "[SEP]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "unk_token": {
38
+ "content": "[UNK]",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ }
44
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "additional_special_tokens": [
45
+ "[PAD]",
46
+ "[UNK]",
47
+ "[CLS]",
48
+ "[SEP]",
49
+ "[MASK]"
50
+ ],
51
+ "clean_up_tokenization_spaces": true,
52
+ "cls_token": "[CLS]",
53
+ "do_basic_tokenize": true,
54
+ "do_lower_case": true,
55
+ "mask_token": "[MASK]",
56
+ "max_length": 512,
57
+ "model_max_length": 512,
58
+ "never_split": null,
59
+ "pad_to_multiple_of": null,
60
+ "pad_token": "[PAD]",
61
+ "pad_token_type_id": 0,
62
+ "padding_side": "right",
63
+ "sep_token": "[SEP]",
64
+ "stride": 0,
65
+ "strip_accents": null,
66
+ "tokenize_chinese_chars": true,
67
+ "tokenizer_class": "BertTokenizer",
68
+ "truncation_side": "right",
69
+ "truncation_strategy": "longest_first",
70
+ "unk_token": "[UNK]"
71
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff