---
license: apache-2.0
library_name: peft
tags:
- axolotl
- generated_from_trainer
base_model: unsloth/Qwen2.5-Coder-1.5B-Instruct
model-index:
- name: taopanda-2_fd21683e-d9f5-4409-ad86-74038599ad40
results: []
---
[](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: unsloth/Qwen2.5-Coder-1.5B-Instruct
bf16: auto
dataset_prepared_path: null
datasets:
- data_files:
- 882551bf31b1c386_train_data.json
ds_type: json
format: custom
path: 882551bf31b1c386_train_data.json
type:
field: null
field_input: mt_text
field_instruction: src_text
field_output: pe_text
field_system: null
format: null
no_input_format: null
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: null
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
hub_model_id: FatCat87/taopanda-2_fd21683e-d9f5-4409-ad86-74038599ad40
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: true
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
micro_batch_size: 2
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: ./outputs/lora-out/taopanda-2_fd21683e-d9f5-4409-ad86-74038599ad40
pad_to_sequence_len: null
resume_from_checkpoint: null
sample_packing: false
saves_per_epoch: 1
seed: 94450
sequence_len: 2048
special_tokens: null
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: fatcat87-taopanda
wandb_log_model: null
wandb_mode: online
wandb_name: taopanda-2_fd21683e-d9f5-4409-ad86-74038599ad40
wandb_project: subnet56
wandb_runid: taopanda-2_fd21683e-d9f5-4409-ad86-74038599ad40
wandb_watch: null
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
```
[](https://wandb.ai/fatcat87-taopanda/subnet56/runs/sun5idtd)
# taopanda-2_fd21683e-d9f5-4409-ad86-74038599ad40
This model is a fine-tuned version of [unsloth/Qwen2.5-Coder-1.5B-Instruct](https://huggingface.co/unsloth/Qwen2.5-Coder-1.5B-Instruct) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5110
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 94450
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.4194 | 0.0043 | 1 | 1.3981 |
| 0.5997 | 0.2513 | 59 | 0.5785 |
| 0.4492 | 0.5027 | 118 | 0.5327 |
| 0.6569 | 0.7540 | 177 | 0.5110 |
### Framework versions
- PEFT 0.11.1
- Transformers 4.42.3
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1