FatCat87 commited on
Commit
498adce
·
verified ·
1 Parent(s): f1c4a38

End of training

Browse files
Files changed (2) hide show
  1. README.md +148 -0
  2. adapter_model.bin +3 -0
README.md ADDED
@@ -0,0 +1,148 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ library_name: peft
4
+ tags:
5
+ - axolotl
6
+ - generated_from_trainer
7
+ base_model: unsloth/SmolLM-135M-Instruct
8
+ model-index:
9
+ - name: taopanda-3_5686f1f6-3a45-459b-8754-23825898ac27
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
17
+ <details><summary>See axolotl config</summary>
18
+
19
+ axolotl version: `0.4.1`
20
+ ```yaml
21
+ adapter: lora
22
+ base_model: unsloth/SmolLM-135M-Instruct
23
+ bf16: auto
24
+ datasets:
25
+ - data_files:
26
+ - 08f7d2887177f473_train_data.json
27
+ ds_type: json
28
+ format: custom
29
+ path: 08f7d2887177f473_train_data.json
30
+ type:
31
+ field: null
32
+ field_input: null
33
+ field_instruction: disease
34
+ field_output: symptoms
35
+ field_system: null
36
+ format: null
37
+ no_input_format: null
38
+ system_format: '{system}'
39
+ system_prompt: ''
40
+ debug: null
41
+ deepspeed: null
42
+ early_stopping_patience: null
43
+ eval_max_new_tokens: 128
44
+ eval_sample_packing: false
45
+ eval_table_size: null
46
+ evals_per_epoch: 4
47
+ flash_attention: true
48
+ fp16: null
49
+ fsdp: null
50
+ fsdp_config: null
51
+ gradient_accumulation_steps: 4
52
+ gradient_checkpointing: true
53
+ group_by_length: false
54
+ hub_model_id: FatCat87/taopanda-3_5686f1f6-3a45-459b-8754-23825898ac27
55
+ learning_rate: 0.0002
56
+ load_in_4bit: false
57
+ load_in_8bit: true
58
+ local_rank: null
59
+ logging_steps: 1
60
+ lora_alpha: 16
61
+ lora_dropout: 0.05
62
+ lora_r: 32
63
+ lora_target_linear: true
64
+ lr_scheduler: cosine
65
+ micro_batch_size: 2
66
+ model_type: AutoModelForCausalLM
67
+ num_epochs: 2
68
+ optimizer: adamw_bnb_8bit
69
+ output_dir: ./outputs/out/taopanda-3_5686f1f6-3a45-459b-8754-23825898ac27
70
+ pad_to_sequence_len: true
71
+ resume_from_checkpoint: null
72
+ sample_packing: true
73
+ saves_per_epoch: 1
74
+ seed: 59135
75
+ sequence_len: 4096
76
+ special_tokens: null
77
+ strict: false
78
+ tf32: false
79
+ tokenizer_type: AutoTokenizer
80
+ train_on_inputs: false
81
+ val_set_size: 0.1
82
+ wandb_entity: fatcat87-taopanda
83
+ wandb_log_model: null
84
+ wandb_mode: online
85
+ wandb_name: taopanda-3_5686f1f6-3a45-459b-8754-23825898ac27
86
+ wandb_project: subnet56
87
+ wandb_runid: taopanda-3_5686f1f6-3a45-459b-8754-23825898ac27
88
+ wandb_watch: null
89
+ warmup_ratio: 0.05
90
+ weight_decay: 0.0
91
+ xformers_attention: null
92
+
93
+ ```
94
+
95
+ </details><br>
96
+
97
+ [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/fatcat87-taopanda/subnet56/runs/czqkectu)
98
+ # taopanda-3_5686f1f6-3a45-459b-8754-23825898ac27
99
+
100
+ This model is a fine-tuned version of [unsloth/SmolLM-135M-Instruct](https://huggingface.co/unsloth/SmolLM-135M-Instruct) on the None dataset.
101
+ It achieves the following results on the evaluation set:
102
+ - Loss: 3.7864
103
+
104
+ ## Model description
105
+
106
+ More information needed
107
+
108
+ ## Intended uses & limitations
109
+
110
+ More information needed
111
+
112
+ ## Training and evaluation data
113
+
114
+ More information needed
115
+
116
+ ## Training procedure
117
+
118
+ ### Training hyperparameters
119
+
120
+ The following hyperparameters were used during training:
121
+ - learning_rate: 0.0002
122
+ - train_batch_size: 2
123
+ - eval_batch_size: 2
124
+ - seed: 59135
125
+ - distributed_type: multi-GPU
126
+ - num_devices: 4
127
+ - gradient_accumulation_steps: 4
128
+ - total_train_batch_size: 32
129
+ - total_eval_batch_size: 8
130
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
131
+ - lr_scheduler_type: cosine
132
+ - num_epochs: 2
133
+
134
+ ### Training results
135
+
136
+ | Training Loss | Epoch | Step | Validation Loss |
137
+ |:-------------:|:-----:|:----:|:---------------:|
138
+ | 3.6224 | 1.0 | 1 | 3.7960 |
139
+ | 3.6067 | 1.75 | 2 | 3.7864 |
140
+
141
+
142
+ ### Framework versions
143
+
144
+ - PEFT 0.11.1
145
+ - Transformers 4.42.3
146
+ - Pytorch 2.3.0+cu121
147
+ - Datasets 2.19.1
148
+ - Tokenizers 0.19.1
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:310e1a470eb0dd7aa04a79d5c21f982447db543baad27d0d1b0ea91c60136fcc
3
+ size 39226778