FatCat87 commited on
Commit
95121b3
·
verified ·
1 Parent(s): 38aacd1

Upload folder using huggingface_hub

Browse files
Files changed (40) hide show
  1. checkpoint-126/README.md +202 -0
  2. checkpoint-126/adapter_config.json +34 -0
  3. checkpoint-126/adapter_model.safetensors +3 -0
  4. checkpoint-126/optimizer.pt +3 -0
  5. checkpoint-126/rng_state_0.pth +3 -0
  6. checkpoint-126/rng_state_1.pth +3 -0
  7. checkpoint-126/rng_state_2.pth +3 -0
  8. checkpoint-126/rng_state_3.pth +3 -0
  9. checkpoint-126/scheduler.pt +3 -0
  10. checkpoint-126/special_tokens_map.json +36 -0
  11. checkpoint-126/tokenizer.json +0 -0
  12. checkpoint-126/tokenizer.model +3 -0
  13. checkpoint-126/tokenizer_config.json +84 -0
  14. checkpoint-126/trainer_state.json +979 -0
  15. checkpoint-126/training_args.bin +3 -0
  16. checkpoint-63/README.md +202 -0
  17. checkpoint-63/adapter_config.json +34 -0
  18. checkpoint-63/adapter_model.safetensors +3 -0
  19. checkpoint-63/optimizer.pt +3 -0
  20. checkpoint-63/rng_state_0.pth +3 -0
  21. checkpoint-63/rng_state_1.pth +3 -0
  22. checkpoint-63/rng_state_2.pth +3 -0
  23. checkpoint-63/rng_state_3.pth +3 -0
  24. checkpoint-63/scheduler.pt +3 -0
  25. checkpoint-63/special_tokens_map.json +36 -0
  26. checkpoint-63/tokenizer.json +0 -0
  27. checkpoint-63/tokenizer.model +3 -0
  28. checkpoint-63/tokenizer_config.json +84 -0
  29. checkpoint-63/trainer_state.json +506 -0
  30. checkpoint-63/training_args.bin +3 -0
  31. merged/config.json +29 -0
  32. merged/generation_config.json +7 -0
  33. merged/pytorch_model-00001-of-00003.bin +3 -0
  34. merged/pytorch_model-00002-of-00003.bin +3 -0
  35. merged/pytorch_model-00003-of-00003.bin +3 -0
  36. merged/pytorch_model.bin.index.json +298 -0
  37. merged/special_tokens_map.json +36 -0
  38. merged/tokenizer.json +0 -0
  39. merged/tokenizer.model +3 -0
  40. merged/tokenizer_config.json +84 -0
checkpoint-126/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: codellama/CodeLlama-7b-Instruct-hf
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.11.1
checkpoint-126/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "codellama/CodeLlama-7b-Instruct-hf",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 16,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 32,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "gate_proj",
24
+ "v_proj",
25
+ "o_proj",
26
+ "k_proj",
27
+ "up_proj",
28
+ "down_proj",
29
+ "q_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
checkpoint-126/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c7089b1e13e098129f9319f730e7e7bbddef45fe368cdaef21f2a86be2c69080
3
+ size 319876032
checkpoint-126/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:942290cd6e6e028d0d15d05c0d37a90facf8d7c2405e76724679f365fefdac72
3
+ size 160736084
checkpoint-126/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:41584a0720f28394137240d9306ba57cf254f42b84c27146db2dd17c3c821580
3
+ size 14960
checkpoint-126/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b30550a388412aa2620e1b94963afde97ac1484ef59c285c4d94f8f2e9bf210b
3
+ size 14960
checkpoint-126/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:04c16d072801fd8e6c1af2bd98cff9d6effb6098e3413cc086845fe0742d3867
3
+ size 14960
checkpoint-126/rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3d8bdb8c6676475066b192dae9e25603bade6d022410b90ce8e6e6f289263e8e
3
+ size 14960
checkpoint-126/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:57bd5ede9ad38331a78fd70d93f6d91378871a220fd953898c2aff97b1586c90
3
+ size 1064
checkpoint-126/special_tokens_map.json ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "▁<PRE>",
4
+ "▁<MID>",
5
+ "▁<SUF>",
6
+ "▁<EOT>"
7
+ ],
8
+ "bos_token": {
9
+ "content": "<s>",
10
+ "lstrip": false,
11
+ "normalized": false,
12
+ "rstrip": false,
13
+ "single_word": false
14
+ },
15
+ "eos_token": {
16
+ "content": "</s>",
17
+ "lstrip": false,
18
+ "normalized": false,
19
+ "rstrip": false,
20
+ "single_word": false
21
+ },
22
+ "pad_token": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false
28
+ },
29
+ "unk_token": {
30
+ "content": "<unk>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false
35
+ }
36
+ }
checkpoint-126/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-126/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:45ccb9c8b6b561889acea59191d66986d314e7cbd6a78abc6e49b139ca91c1e6
3
+ size 500058
checkpoint-126/tokenizer_config.json ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "32007": {
30
+ "content": "▁<PRE>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "32008": {
38
+ "content": "▁<SUF>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "32009": {
46
+ "content": "▁<MID>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "32010": {
54
+ "content": "▁<EOT>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ }
61
+ },
62
+ "additional_special_tokens": [
63
+ "▁<PRE>",
64
+ "▁<MID>",
65
+ "▁<SUF>",
66
+ "▁<EOT>"
67
+ ],
68
+ "bos_token": "<s>",
69
+ "chat_template": "{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}{% set system_message = messages[0]['content'] %}{% else %}{% set loop_messages = messages %}{% set system_message = false %}{% endif %}{% for message in loop_messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if loop.index0 == 0 and system_message != false %}{% set content = '<<SYS>>\\n' + system_message + '\\n<</SYS>>\\n\\n' + message['content'] %}{% else %}{% set content = message['content'] %}{% endif %}{% if message['role'] == 'user' %}{{ bos_token + '[INST] ' + content | trim + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ ' ' + content | trim + ' ' + eos_token }}{% endif %}{% endfor %}",
70
+ "clean_up_tokenization_spaces": false,
71
+ "eos_token": "</s>",
72
+ "eot_token": "▁<EOT>",
73
+ "fill_token": "<FILL_ME>",
74
+ "legacy": null,
75
+ "middle_token": "▁<MID>",
76
+ "model_max_length": 1000000000000000019884624838656,
77
+ "pad_token": "</s>",
78
+ "prefix_token": "▁<PRE>",
79
+ "sp_model_kwargs": {},
80
+ "suffix_token": "▁<SUF>",
81
+ "tokenizer_class": "CodeLlamaTokenizer",
82
+ "unk_token": "<unk>",
83
+ "use_default_system_prompt": false
84
+ }
checkpoint-126/trainer_state.json ADDED
@@ -0,0 +1,979 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.9566929133858268,
5
+ "eval_steps": 16,
6
+ "global_step": 126,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.015748031496062992,
13
+ "grad_norm": 0.034481361508369446,
14
+ "learning_rate": 4e-05,
15
+ "loss": 0.1412,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.015748031496062992,
20
+ "eval_loss": 0.1612786203622818,
21
+ "eval_runtime": 64.5157,
22
+ "eval_samples_per_second": 7.812,
23
+ "eval_steps_per_second": 0.977,
24
+ "step": 1
25
+ },
26
+ {
27
+ "epoch": 0.031496062992125984,
28
+ "grad_norm": 0.029317770153284073,
29
+ "learning_rate": 8e-05,
30
+ "loss": 0.1191,
31
+ "step": 2
32
+ },
33
+ {
34
+ "epoch": 0.047244094488188976,
35
+ "grad_norm": 0.036621659994125366,
36
+ "learning_rate": 0.00012,
37
+ "loss": 0.1369,
38
+ "step": 3
39
+ },
40
+ {
41
+ "epoch": 0.06299212598425197,
42
+ "grad_norm": 0.04425783455371857,
43
+ "learning_rate": 0.00016,
44
+ "loss": 0.1321,
45
+ "step": 4
46
+ },
47
+ {
48
+ "epoch": 0.07874015748031496,
49
+ "grad_norm": 0.05247063934803009,
50
+ "learning_rate": 0.0002,
51
+ "loss": 0.1285,
52
+ "step": 5
53
+ },
54
+ {
55
+ "epoch": 0.09448818897637795,
56
+ "grad_norm": 0.03902214765548706,
57
+ "learning_rate": 0.00019996629653035126,
58
+ "loss": 0.1004,
59
+ "step": 6
60
+ },
61
+ {
62
+ "epoch": 0.11023622047244094,
63
+ "grad_norm": 0.03752463683485985,
64
+ "learning_rate": 0.00019986520883988232,
65
+ "loss": 0.0985,
66
+ "step": 7
67
+ },
68
+ {
69
+ "epoch": 0.12598425196850394,
70
+ "grad_norm": 0.03061060793697834,
71
+ "learning_rate": 0.00019969680506871137,
72
+ "loss": 0.0912,
73
+ "step": 8
74
+ },
75
+ {
76
+ "epoch": 0.14173228346456693,
77
+ "grad_norm": 0.034427180886268616,
78
+ "learning_rate": 0.00019946119873266613,
79
+ "loss": 0.0836,
80
+ "step": 9
81
+ },
82
+ {
83
+ "epoch": 0.15748031496062992,
84
+ "grad_norm": 0.03106631338596344,
85
+ "learning_rate": 0.00019915854864676664,
86
+ "loss": 0.0734,
87
+ "step": 10
88
+ },
89
+ {
90
+ "epoch": 0.1732283464566929,
91
+ "grad_norm": 0.02498232200741768,
92
+ "learning_rate": 0.00019878905881817252,
93
+ "loss": 0.0729,
94
+ "step": 11
95
+ },
96
+ {
97
+ "epoch": 0.1889763779527559,
98
+ "grad_norm": 0.03798564895987511,
99
+ "learning_rate": 0.00019835297830866826,
100
+ "loss": 0.0694,
101
+ "step": 12
102
+ },
103
+ {
104
+ "epoch": 0.2047244094488189,
105
+ "grad_norm": 0.046124912798404694,
106
+ "learning_rate": 0.00019785060106677818,
107
+ "loss": 0.0833,
108
+ "step": 13
109
+ },
110
+ {
111
+ "epoch": 0.2204724409448819,
112
+ "grad_norm": 0.02981509082019329,
113
+ "learning_rate": 0.00019728226572962473,
114
+ "loss": 0.0713,
115
+ "step": 14
116
+ },
117
+ {
118
+ "epoch": 0.23622047244094488,
119
+ "grad_norm": 0.02461801841855049,
120
+ "learning_rate": 0.0001966483553946637,
121
+ "loss": 0.0657,
122
+ "step": 15
123
+ },
124
+ {
125
+ "epoch": 0.25196850393700787,
126
+ "grad_norm": 0.04344266653060913,
127
+ "learning_rate": 0.00019594929736144976,
128
+ "loss": 0.0635,
129
+ "step": 16
130
+ },
131
+ {
132
+ "epoch": 0.25196850393700787,
133
+ "eval_loss": 0.06579381227493286,
134
+ "eval_runtime": 64.6166,
135
+ "eval_samples_per_second": 7.8,
136
+ "eval_steps_per_second": 0.975,
137
+ "step": 16
138
+ },
139
+ {
140
+ "epoch": 0.2677165354330709,
141
+ "grad_norm": 0.0320642925798893,
142
+ "learning_rate": 0.00019518556284360696,
143
+ "loss": 0.0656,
144
+ "step": 17
145
+ },
146
+ {
147
+ "epoch": 0.28346456692913385,
148
+ "grad_norm": 0.028899891301989555,
149
+ "learning_rate": 0.0001943576666511982,
150
+ "loss": 0.0462,
151
+ "step": 18
152
+ },
153
+ {
154
+ "epoch": 0.2992125984251969,
155
+ "grad_norm": 0.02383616380393505,
156
+ "learning_rate": 0.0001934661668437073,
157
+ "loss": 0.0649,
158
+ "step": 19
159
+ },
160
+ {
161
+ "epoch": 0.31496062992125984,
162
+ "grad_norm": 0.03346535563468933,
163
+ "learning_rate": 0.0001925116643538684,
164
+ "loss": 0.0546,
165
+ "step": 20
166
+ },
167
+ {
168
+ "epoch": 0.33070866141732286,
169
+ "grad_norm": 0.020454615354537964,
170
+ "learning_rate": 0.00019149480258259533,
171
+ "loss": 0.0538,
172
+ "step": 21
173
+ },
174
+ {
175
+ "epoch": 0.3464566929133858,
176
+ "grad_norm": 0.02081696316599846,
177
+ "learning_rate": 0.00019041626696528503,
178
+ "loss": 0.0526,
179
+ "step": 22
180
+ },
181
+ {
182
+ "epoch": 0.36220472440944884,
183
+ "grad_norm": 0.028128350153565407,
184
+ "learning_rate": 0.0001892767845097864,
185
+ "loss": 0.0593,
186
+ "step": 23
187
+ },
188
+ {
189
+ "epoch": 0.3779527559055118,
190
+ "grad_norm": 0.015519126318395138,
191
+ "learning_rate": 0.00018807712330634642,
192
+ "loss": 0.0528,
193
+ "step": 24
194
+ },
195
+ {
196
+ "epoch": 0.3937007874015748,
197
+ "grad_norm": 0.03593792766332626,
198
+ "learning_rate": 0.0001868180920098644,
199
+ "loss": 0.0481,
200
+ "step": 25
201
+ },
202
+ {
203
+ "epoch": 0.4094488188976378,
204
+ "grad_norm": 0.015408644452691078,
205
+ "learning_rate": 0.00018550053929480202,
206
+ "loss": 0.0479,
207
+ "step": 26
208
+ },
209
+ {
210
+ "epoch": 0.4251968503937008,
211
+ "grad_norm": 0.021226301789283752,
212
+ "learning_rate": 0.00018412535328311814,
213
+ "loss": 0.054,
214
+ "step": 27
215
+ },
216
+ {
217
+ "epoch": 0.4409448818897638,
218
+ "grad_norm": 0.01717953570187092,
219
+ "learning_rate": 0.0001826934609456129,
220
+ "loss": 0.0523,
221
+ "step": 28
222
+ },
223
+ {
224
+ "epoch": 0.4566929133858268,
225
+ "grad_norm": 0.019626960158348083,
226
+ "learning_rate": 0.00018120582747708502,
227
+ "loss": 0.0512,
228
+ "step": 29
229
+ },
230
+ {
231
+ "epoch": 0.47244094488188976,
232
+ "grad_norm": 0.019186396151781082,
233
+ "learning_rate": 0.0001796634556457236,
234
+ "loss": 0.05,
235
+ "step": 30
236
+ },
237
+ {
238
+ "epoch": 0.4881889763779528,
239
+ "grad_norm": 0.014989328570663929,
240
+ "learning_rate": 0.0001780673851171728,
241
+ "loss": 0.0441,
242
+ "step": 31
243
+ },
244
+ {
245
+ "epoch": 0.5039370078740157,
246
+ "grad_norm": 0.012519012205302715,
247
+ "learning_rate": 0.00017641869175372493,
248
+ "loss": 0.0459,
249
+ "step": 32
250
+ },
251
+ {
252
+ "epoch": 0.5039370078740157,
253
+ "eval_loss": 0.056131936609745026,
254
+ "eval_runtime": 64.4985,
255
+ "eval_samples_per_second": 7.814,
256
+ "eval_steps_per_second": 0.977,
257
+ "step": 32
258
+ },
259
+ {
260
+ "epoch": 0.5196850393700787,
261
+ "grad_norm": 0.01598576456308365,
262
+ "learning_rate": 0.00017471848688911464,
263
+ "loss": 0.0496,
264
+ "step": 33
265
+ },
266
+ {
267
+ "epoch": 0.5354330708661418,
268
+ "grad_norm": 0.017361309379339218,
269
+ "learning_rate": 0.000172967916579403,
270
+ "loss": 0.0534,
271
+ "step": 34
272
+ },
273
+ {
274
+ "epoch": 0.5511811023622047,
275
+ "grad_norm": 0.021230200305581093,
276
+ "learning_rate": 0.00017116816083045602,
277
+ "loss": 0.0505,
278
+ "step": 35
279
+ },
280
+ {
281
+ "epoch": 0.5669291338582677,
282
+ "grad_norm": 0.01624094881117344,
283
+ "learning_rate": 0.0001693204328025389,
284
+ "loss": 0.0568,
285
+ "step": 36
286
+ },
287
+ {
288
+ "epoch": 0.5826771653543307,
289
+ "grad_norm": 0.014916475862264633,
290
+ "learning_rate": 0.00016742597799256182,
291
+ "loss": 0.0542,
292
+ "step": 37
293
+ },
294
+ {
295
+ "epoch": 0.5984251968503937,
296
+ "grad_norm": 0.013211382552981377,
297
+ "learning_rate": 0.00016548607339452853,
298
+ "loss": 0.0507,
299
+ "step": 38
300
+ },
301
+ {
302
+ "epoch": 0.6141732283464567,
303
+ "grad_norm": 0.01305565144866705,
304
+ "learning_rate": 0.00016350202663875386,
305
+ "loss": 0.0387,
306
+ "step": 39
307
+ },
308
+ {
309
+ "epoch": 0.6299212598425197,
310
+ "grad_norm": 0.011459614150226116,
311
+ "learning_rate": 0.0001614751751104301,
312
+ "loss": 0.0433,
313
+ "step": 40
314
+ },
315
+ {
316
+ "epoch": 0.6456692913385826,
317
+ "grad_norm": 0.014712609350681305,
318
+ "learning_rate": 0.00015940688504813662,
319
+ "loss": 0.0571,
320
+ "step": 41
321
+ },
322
+ {
323
+ "epoch": 0.6614173228346457,
324
+ "grad_norm": 0.015662657096982002,
325
+ "learning_rate": 0.00015729855062290022,
326
+ "loss": 0.0504,
327
+ "step": 42
328
+ },
329
+ {
330
+ "epoch": 0.6771653543307087,
331
+ "grad_norm": 0.011235736310482025,
332
+ "learning_rate": 0.00015515159299842707,
333
+ "loss": 0.0453,
334
+ "step": 43
335
+ },
336
+ {
337
+ "epoch": 0.6929133858267716,
338
+ "grad_norm": 0.011984420008957386,
339
+ "learning_rate": 0.00015296745937313987,
340
+ "loss": 0.0402,
341
+ "step": 44
342
+ },
343
+ {
344
+ "epoch": 0.7086614173228346,
345
+ "grad_norm": 0.010523953475058079,
346
+ "learning_rate": 0.00015074762200466556,
347
+ "loss": 0.036,
348
+ "step": 45
349
+ },
350
+ {
351
+ "epoch": 0.7244094488188977,
352
+ "grad_norm": 0.013540665619075298,
353
+ "learning_rate": 0.00014849357721743168,
354
+ "loss": 0.0346,
355
+ "step": 46
356
+ },
357
+ {
358
+ "epoch": 0.7401574803149606,
359
+ "grad_norm": 0.012998640537261963,
360
+ "learning_rate": 0.00014620684439403962,
361
+ "loss": 0.0468,
362
+ "step": 47
363
+ },
364
+ {
365
+ "epoch": 0.7559055118110236,
366
+ "grad_norm": 0.01443515345454216,
367
+ "learning_rate": 0.0001438889649510956,
368
+ "loss": 0.0453,
369
+ "step": 48
370
+ },
371
+ {
372
+ "epoch": 0.7559055118110236,
373
+ "eval_loss": 0.05216333642601967,
374
+ "eval_runtime": 64.5137,
375
+ "eval_samples_per_second": 7.812,
376
+ "eval_steps_per_second": 0.977,
377
+ "step": 48
378
+ },
379
+ {
380
+ "epoch": 0.7716535433070866,
381
+ "grad_norm": 0.01463907677680254,
382
+ "learning_rate": 0.00014154150130018866,
383
+ "loss": 0.0526,
384
+ "step": 49
385
+ },
386
+ {
387
+ "epoch": 0.7874015748031497,
388
+ "grad_norm": 0.01614455319941044,
389
+ "learning_rate": 0.00013916603579471705,
390
+ "loss": 0.0484,
391
+ "step": 50
392
+ },
393
+ {
394
+ "epoch": 0.8031496062992126,
395
+ "grad_norm": 0.014042153023183346,
396
+ "learning_rate": 0.000136764169663272,
397
+ "loss": 0.0419,
398
+ "step": 51
399
+ },
400
+ {
401
+ "epoch": 0.8188976377952756,
402
+ "grad_norm": 0.015309924259781837,
403
+ "learning_rate": 0.00013433752193029886,
404
+ "loss": 0.0425,
405
+ "step": 52
406
+ },
407
+ {
408
+ "epoch": 0.8346456692913385,
409
+ "grad_norm": 0.018054217100143433,
410
+ "learning_rate": 0.00013188772832476188,
411
+ "loss": 0.0426,
412
+ "step": 53
413
+ },
414
+ {
415
+ "epoch": 0.8503937007874016,
416
+ "grad_norm": 0.012343033216893673,
417
+ "learning_rate": 0.00012941644017754964,
418
+ "loss": 0.0448,
419
+ "step": 54
420
+ },
421
+ {
422
+ "epoch": 0.8661417322834646,
423
+ "grad_norm": 0.012457596138119698,
424
+ "learning_rate": 0.00012692532330836346,
425
+ "loss": 0.0451,
426
+ "step": 55
427
+ },
428
+ {
429
+ "epoch": 0.8818897637795275,
430
+ "grad_norm": 0.013512413017451763,
431
+ "learning_rate": 0.00012441605690283915,
432
+ "loss": 0.0413,
433
+ "step": 56
434
+ },
435
+ {
436
+ "epoch": 0.8976377952755905,
437
+ "grad_norm": 0.013424846343696117,
438
+ "learning_rate": 0.0001218903323806595,
439
+ "loss": 0.0441,
440
+ "step": 57
441
+ },
442
+ {
443
+ "epoch": 0.9133858267716536,
444
+ "grad_norm": 0.014157367870211601,
445
+ "learning_rate": 0.00011934985225541998,
446
+ "loss": 0.0443,
447
+ "step": 58
448
+ },
449
+ {
450
+ "epoch": 0.9291338582677166,
451
+ "grad_norm": 0.0130110839381814,
452
+ "learning_rate": 0.00011679632898701649,
453
+ "loss": 0.0478,
454
+ "step": 59
455
+ },
456
+ {
457
+ "epoch": 0.9448818897637795,
458
+ "grad_norm": 0.012677576392889023,
459
+ "learning_rate": 0.00011423148382732853,
460
+ "loss": 0.0399,
461
+ "step": 60
462
+ },
463
+ {
464
+ "epoch": 0.9606299212598425,
465
+ "grad_norm": 0.01409006118774414,
466
+ "learning_rate": 0.00011165704565997593,
467
+ "loss": 0.0481,
468
+ "step": 61
469
+ },
470
+ {
471
+ "epoch": 0.9763779527559056,
472
+ "grad_norm": 0.013535700738430023,
473
+ "learning_rate": 0.00010907474983493144,
474
+ "loss": 0.0406,
475
+ "step": 62
476
+ },
477
+ {
478
+ "epoch": 0.9921259842519685,
479
+ "grad_norm": 0.014210895635187626,
480
+ "learning_rate": 0.0001064863369987743,
481
+ "loss": 0.0425,
482
+ "step": 63
483
+ },
484
+ {
485
+ "epoch": 1.0078740157480315,
486
+ "grad_norm": 0.014430968090891838,
487
+ "learning_rate": 0.00010389355192137377,
488
+ "loss": 0.0483,
489
+ "step": 64
490
+ },
491
+ {
492
+ "epoch": 1.0078740157480315,
493
+ "eval_loss": 0.049744635820388794,
494
+ "eval_runtime": 64.598,
495
+ "eval_samples_per_second": 7.802,
496
+ "eval_steps_per_second": 0.975,
497
+ "step": 64
498
+ },
499
+ {
500
+ "epoch": 1.0236220472440944,
501
+ "grad_norm": 0.0142066590487957,
502
+ "learning_rate": 0.0001012981423197931,
503
+ "loss": 0.0391,
504
+ "step": 65
505
+ },
506
+ {
507
+ "epoch": 1.0118110236220472,
508
+ "grad_norm": 0.013278558850288391,
509
+ "learning_rate": 9.870185768020693e-05,
510
+ "loss": 0.045,
511
+ "step": 66
512
+ },
513
+ {
514
+ "epoch": 1.0275590551181102,
515
+ "grad_norm": 0.01264102477580309,
516
+ "learning_rate": 9.610644807862625e-05,
517
+ "loss": 0.0396,
518
+ "step": 67
519
+ },
520
+ {
521
+ "epoch": 1.0433070866141732,
522
+ "grad_norm": 0.014591066166758537,
523
+ "learning_rate": 9.35136630012257e-05,
524
+ "loss": 0.0443,
525
+ "step": 68
526
+ },
527
+ {
528
+ "epoch": 1.0590551181102361,
529
+ "grad_norm": 0.013674317859113216,
530
+ "learning_rate": 9.092525016506858e-05,
531
+ "loss": 0.0493,
532
+ "step": 69
533
+ },
534
+ {
535
+ "epoch": 1.0748031496062993,
536
+ "grad_norm": 0.0148893091827631,
537
+ "learning_rate": 8.83429543400241e-05,
538
+ "loss": 0.0412,
539
+ "step": 70
540
+ },
541
+ {
542
+ "epoch": 1.0905511811023623,
543
+ "grad_norm": 0.01666112430393696,
544
+ "learning_rate": 8.57685161726715e-05,
545
+ "loss": 0.0476,
546
+ "step": 71
547
+ },
548
+ {
549
+ "epoch": 1.1062992125984252,
550
+ "grad_norm": 0.013044373132288456,
551
+ "learning_rate": 8.320367101298351e-05,
552
+ "loss": 0.0391,
553
+ "step": 72
554
+ },
555
+ {
556
+ "epoch": 1.1220472440944882,
557
+ "grad_norm": 0.014822134748101234,
558
+ "learning_rate": 8.065014774458003e-05,
559
+ "loss": 0.0406,
560
+ "step": 73
561
+ },
562
+ {
563
+ "epoch": 1.1377952755905512,
564
+ "grad_norm": 0.013880250044167042,
565
+ "learning_rate": 7.810966761934053e-05,
566
+ "loss": 0.0405,
567
+ "step": 74
568
+ },
569
+ {
570
+ "epoch": 1.1535433070866141,
571
+ "grad_norm": 0.014100627042353153,
572
+ "learning_rate": 7.558394309716088e-05,
573
+ "loss": 0.0422,
574
+ "step": 75
575
+ },
576
+ {
577
+ "epoch": 1.169291338582677,
578
+ "grad_norm": 0.01578613370656967,
579
+ "learning_rate": 7.307467669163655e-05,
580
+ "loss": 0.0411,
581
+ "step": 76
582
+ },
583
+ {
584
+ "epoch": 1.1850393700787403,
585
+ "grad_norm": 0.013604246079921722,
586
+ "learning_rate": 7.058355982245037e-05,
587
+ "loss": 0.0373,
588
+ "step": 77
589
+ },
590
+ {
591
+ "epoch": 1.2007874015748032,
592
+ "grad_norm": 0.016308438032865524,
593
+ "learning_rate": 6.811227167523815e-05,
594
+ "loss": 0.0472,
595
+ "step": 78
596
+ },
597
+ {
598
+ "epoch": 1.2165354330708662,
599
+ "grad_norm": 0.014247502200305462,
600
+ "learning_rate": 6.566247806970119e-05,
601
+ "loss": 0.0464,
602
+ "step": 79
603
+ },
604
+ {
605
+ "epoch": 1.2322834645669292,
606
+ "grad_norm": 0.012891258113086224,
607
+ "learning_rate": 6.323583033672799e-05,
608
+ "loss": 0.0366,
609
+ "step": 80
610
+ },
611
+ {
612
+ "epoch": 1.2322834645669292,
613
+ "eval_loss": 0.048343077301979065,
614
+ "eval_runtime": 64.7735,
615
+ "eval_samples_per_second": 7.781,
616
+ "eval_steps_per_second": 0.973,
617
+ "step": 80
618
+ },
619
+ {
620
+ "epoch": 1.2480314960629921,
621
+ "grad_norm": 0.015204845927655697,
622
+ "learning_rate": 6.083396420528298e-05,
623
+ "loss": 0.0438,
624
+ "step": 81
625
+ },
626
+ {
627
+ "epoch": 1.263779527559055,
628
+ "grad_norm": 0.01763073354959488,
629
+ "learning_rate": 5.845849869981137e-05,
630
+ "loss": 0.0466,
631
+ "step": 82
632
+ },
633
+ {
634
+ "epoch": 1.279527559055118,
635
+ "grad_norm": 0.013175925239920616,
636
+ "learning_rate": 5.611103504890444e-05,
637
+ "loss": 0.039,
638
+ "step": 83
639
+ },
640
+ {
641
+ "epoch": 1.295275590551181,
642
+ "grad_norm": 0.016102107241749763,
643
+ "learning_rate": 5.379315560596038e-05,
644
+ "loss": 0.0462,
645
+ "step": 84
646
+ },
647
+ {
648
+ "epoch": 1.311023622047244,
649
+ "grad_norm": 0.014480439946055412,
650
+ "learning_rate": 5.1506422782568345e-05,
651
+ "loss": 0.0402,
652
+ "step": 85
653
+ },
654
+ {
655
+ "epoch": 1.326771653543307,
656
+ "grad_norm": 0.017164282500743866,
657
+ "learning_rate": 4.9252377995334444e-05,
658
+ "loss": 0.0418,
659
+ "step": 86
660
+ },
661
+ {
662
+ "epoch": 1.3425196850393701,
663
+ "grad_norm": 0.013455789536237717,
664
+ "learning_rate": 4.703254062686017e-05,
665
+ "loss": 0.0402,
666
+ "step": 87
667
+ },
668
+ {
669
+ "epoch": 1.358267716535433,
670
+ "grad_norm": 0.014540264382958412,
671
+ "learning_rate": 4.484840700157295e-05,
672
+ "loss": 0.038,
673
+ "step": 88
674
+ },
675
+ {
676
+ "epoch": 1.374015748031496,
677
+ "grad_norm": 0.014430800452828407,
678
+ "learning_rate": 4.270144937709981e-05,
679
+ "loss": 0.0393,
680
+ "step": 89
681
+ },
682
+ {
683
+ "epoch": 1.389763779527559,
684
+ "grad_norm": 0.013658607378602028,
685
+ "learning_rate": 4.059311495186338e-05,
686
+ "loss": 0.0354,
687
+ "step": 90
688
+ },
689
+ {
690
+ "epoch": 1.405511811023622,
691
+ "grad_norm": 0.01640120893716812,
692
+ "learning_rate": 3.852482488956992e-05,
693
+ "loss": 0.0446,
694
+ "step": 91
695
+ },
696
+ {
697
+ "epoch": 1.421259842519685,
698
+ "grad_norm": 0.013601432554423809,
699
+ "learning_rate": 3.649797336124615e-05,
700
+ "loss": 0.035,
701
+ "step": 92
702
+ },
703
+ {
704
+ "epoch": 1.4370078740157481,
705
+ "grad_norm": 0.016174251213669777,
706
+ "learning_rate": 3.45139266054715e-05,
707
+ "loss": 0.0432,
708
+ "step": 93
709
+ },
710
+ {
711
+ "epoch": 1.452755905511811,
712
+ "grad_norm": 0.01637461967766285,
713
+ "learning_rate": 3.257402200743821e-05,
714
+ "loss": 0.0445,
715
+ "step": 94
716
+ },
717
+ {
718
+ "epoch": 1.468503937007874,
719
+ "grad_norm": 0.0154279675334692,
720
+ "learning_rate": 3.0679567197461134e-05,
721
+ "loss": 0.0433,
722
+ "step": 95
723
+ },
724
+ {
725
+ "epoch": 1.484251968503937,
726
+ "grad_norm": 0.013604864478111267,
727
+ "learning_rate": 2.8831839169543996e-05,
728
+ "loss": 0.0408,
729
+ "step": 96
730
+ },
731
+ {
732
+ "epoch": 1.484251968503937,
733
+ "eval_loss": 0.047206979244947433,
734
+ "eval_runtime": 64.4089,
735
+ "eval_samples_per_second": 7.825,
736
+ "eval_steps_per_second": 0.978,
737
+ "step": 96
738
+ },
739
+ {
740
+ "epoch": 1.5,
741
+ "grad_norm": 0.014560838229954243,
742
+ "learning_rate": 2.7032083420597e-05,
743
+ "loss": 0.0385,
744
+ "step": 97
745
+ },
746
+ {
747
+ "epoch": 1.515748031496063,
748
+ "grad_norm": 0.01328711025416851,
749
+ "learning_rate": 2.528151311088537e-05,
750
+ "loss": 0.0397,
751
+ "step": 98
752
+ },
753
+ {
754
+ "epoch": 1.531496062992126,
755
+ "grad_norm": 0.016683636233210564,
756
+ "learning_rate": 2.3581308246275103e-05,
757
+ "loss": 0.0398,
758
+ "step": 99
759
+ },
760
+ {
761
+ "epoch": 1.547244094488189,
762
+ "grad_norm": 0.012160832062363625,
763
+ "learning_rate": 2.1932614882827197e-05,
764
+ "loss": 0.0328,
765
+ "step": 100
766
+ },
767
+ {
768
+ "epoch": 1.5629921259842519,
769
+ "grad_norm": 0.013753566890954971,
770
+ "learning_rate": 2.03365443542764e-05,
771
+ "loss": 0.0392,
772
+ "step": 101
773
+ },
774
+ {
775
+ "epoch": 1.5787401574803148,
776
+ "grad_norm": 0.013317620381712914,
777
+ "learning_rate": 1.879417252291502e-05,
778
+ "loss": 0.0346,
779
+ "step": 102
780
+ },
781
+ {
782
+ "epoch": 1.594488188976378,
783
+ "grad_norm": 0.018083734437823296,
784
+ "learning_rate": 1.730653905438714e-05,
785
+ "loss": 0.0482,
786
+ "step": 103
787
+ },
788
+ {
789
+ "epoch": 1.610236220472441,
790
+ "grad_norm": 0.015288034453988075,
791
+ "learning_rate": 1.587464671688187e-05,
792
+ "loss": 0.0416,
793
+ "step": 104
794
+ },
795
+ {
796
+ "epoch": 1.625984251968504,
797
+ "grad_norm": 0.01392639335244894,
798
+ "learning_rate": 1.4499460705197998e-05,
799
+ "loss": 0.0355,
800
+ "step": 105
801
+ },
802
+ {
803
+ "epoch": 1.641732283464567,
804
+ "grad_norm": 0.014464518055319786,
805
+ "learning_rate": 1.3181907990135622e-05,
806
+ "loss": 0.0378,
807
+ "step": 106
808
+ },
809
+ {
810
+ "epoch": 1.65748031496063,
811
+ "grad_norm": 0.014780817553400993,
812
+ "learning_rate": 1.1922876693653585e-05,
813
+ "loss": 0.0375,
814
+ "step": 107
815
+ },
816
+ {
817
+ "epoch": 1.673228346456693,
818
+ "grad_norm": 0.014019722118973732,
819
+ "learning_rate": 1.0723215490213634e-05,
820
+ "loss": 0.0371,
821
+ "step": 108
822
+ },
823
+ {
824
+ "epoch": 1.688976377952756,
825
+ "grad_norm": 0.013653130270540714,
826
+ "learning_rate": 9.583733034714981e-06,
827
+ "loss": 0.0341,
828
+ "step": 109
829
+ },
830
+ {
831
+ "epoch": 1.704724409448819,
832
+ "grad_norm": 0.014543344266712666,
833
+ "learning_rate": 8.505197417404687e-06,
834
+ "loss": 0.0363,
835
+ "step": 110
836
+ },
837
+ {
838
+ "epoch": 1.720472440944882,
839
+ "grad_norm": 0.01664627157151699,
840
+ "learning_rate": 7.488335646131628e-06,
841
+ "loss": 0.0397,
842
+ "step": 111
843
+ },
844
+ {
845
+ "epoch": 1.736220472440945,
846
+ "grad_norm": 0.01318218931555748,
847
+ "learning_rate": 6.533833156292679e-06,
848
+ "loss": 0.0363,
849
+ "step": 112
850
+ },
851
+ {
852
+ "epoch": 1.736220472440945,
853
+ "eval_loss": 0.04670024663209915,
854
+ "eval_runtime": 64.4696,
855
+ "eval_samples_per_second": 7.818,
856
+ "eval_steps_per_second": 0.977,
857
+ "step": 112
858
+ },
859
+ {
860
+ "epoch": 1.7519685039370079,
861
+ "grad_norm": 0.014432979747653008,
862
+ "learning_rate": 5.6423333488018095e-06,
863
+ "loss": 0.0384,
864
+ "step": 113
865
+ },
866
+ {
867
+ "epoch": 1.7677165354330708,
868
+ "grad_norm": 0.013415982015430927,
869
+ "learning_rate": 4.8144371563930476e-06,
870
+ "loss": 0.0383,
871
+ "step": 114
872
+ },
873
+ {
874
+ "epoch": 1.7834645669291338,
875
+ "grad_norm": 0.01275411993265152,
876
+ "learning_rate": 4.050702638550275e-06,
877
+ "loss": 0.0344,
878
+ "step": 115
879
+ },
880
+ {
881
+ "epoch": 1.7992125984251968,
882
+ "grad_norm": 0.012640634551644325,
883
+ "learning_rate": 3.3516446053363015e-06,
884
+ "loss": 0.0325,
885
+ "step": 116
886
+ },
887
+ {
888
+ "epoch": 1.8149606299212597,
889
+ "grad_norm": 0.014171491377055645,
890
+ "learning_rate": 2.717734270375272e-06,
891
+ "loss": 0.0375,
892
+ "step": 117
893
+ },
894
+ {
895
+ "epoch": 1.8307086614173227,
896
+ "grad_norm": 0.014255956746637821,
897
+ "learning_rate": 2.1493989332218468e-06,
898
+ "loss": 0.0338,
899
+ "step": 118
900
+ },
901
+ {
902
+ "epoch": 1.8464566929133859,
903
+ "grad_norm": 0.015443972311913967,
904
+ "learning_rate": 1.6470216913317626e-06,
905
+ "loss": 0.0395,
906
+ "step": 119
907
+ },
908
+ {
909
+ "epoch": 1.8622047244094488,
910
+ "grad_norm": 0.015347709879279137,
911
+ "learning_rate": 1.2109411818274852e-06,
912
+ "loss": 0.0412,
913
+ "step": 120
914
+ },
915
+ {
916
+ "epoch": 1.8779527559055118,
917
+ "grad_norm": 0.011879626661539078,
918
+ "learning_rate": 8.41451353233369e-07,
919
+ "loss": 0.0353,
920
+ "step": 121
921
+ },
922
+ {
923
+ "epoch": 1.8937007874015748,
924
+ "grad_norm": 0.013861949555575848,
925
+ "learning_rate": 5.388012673338661e-07,
926
+ "loss": 0.0385,
927
+ "step": 122
928
+ },
929
+ {
930
+ "epoch": 1.909448818897638,
931
+ "grad_norm": 0.013466684147715569,
932
+ "learning_rate": 3.0319493128866396e-07,
933
+ "loss": 0.0392,
934
+ "step": 123
935
+ },
936
+ {
937
+ "epoch": 1.925196850393701,
938
+ "grad_norm": 0.014232831075787544,
939
+ "learning_rate": 1.3479116011769767e-07,
940
+ "loss": 0.0387,
941
+ "step": 124
942
+ },
943
+ {
944
+ "epoch": 1.9409448818897639,
945
+ "grad_norm": 0.013951584696769714,
946
+ "learning_rate": 3.370346964876036e-08,
947
+ "loss": 0.039,
948
+ "step": 125
949
+ },
950
+ {
951
+ "epoch": 1.9566929133858268,
952
+ "grad_norm": 0.014759634621441364,
953
+ "learning_rate": 0.0,
954
+ "loss": 0.04,
955
+ "step": 126
956
+ }
957
+ ],
958
+ "logging_steps": 1,
959
+ "max_steps": 126,
960
+ "num_input_tokens_seen": 0,
961
+ "num_train_epochs": 2,
962
+ "save_steps": 63,
963
+ "stateful_callbacks": {
964
+ "TrainerControl": {
965
+ "args": {
966
+ "should_epoch_stop": false,
967
+ "should_evaluate": false,
968
+ "should_log": false,
969
+ "should_save": true,
970
+ "should_training_stop": true
971
+ },
972
+ "attributes": {}
973
+ }
974
+ },
975
+ "total_flos": 6.624893472111329e+17,
976
+ "train_batch_size": 2,
977
+ "trial_name": null,
978
+ "trial_params": null
979
+ }
checkpoint-126/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:556c30d4be6c1026c9924962f2173f57a6a22d7e9b29faf92f210c3d41cc0da5
3
+ size 6200
checkpoint-63/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: codellama/CodeLlama-7b-Instruct-hf
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.11.1
checkpoint-63/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "codellama/CodeLlama-7b-Instruct-hf",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 16,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 32,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "gate_proj",
24
+ "v_proj",
25
+ "o_proj",
26
+ "k_proj",
27
+ "up_proj",
28
+ "down_proj",
29
+ "q_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
checkpoint-63/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6aa654dbc8c1049e55aace02770ffcd8cec55460f85e8460d18f5e3033b7df26
3
+ size 319876032
checkpoint-63/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9502252908d6c46b385c1e6bba06842e0b070e647658a21e54ce127e130e15b1
3
+ size 160736084
checkpoint-63/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:efb5bf797358f404114c26785df000400f5ecb687b1e7e991084cec0641cac1b
3
+ size 14960
checkpoint-63/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8a165ec9012dbc0a6e36037dc44a987d97dd1d483d9e77ef962ba19cf7f3e43b
3
+ size 14960
checkpoint-63/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0b05004f30cf8852ff529c6a028d2cbc31d93add9f710f4a2d12cad758fb5d76
3
+ size 14960
checkpoint-63/rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ace1f4b12d474bd4affaf2d8e73c7be1be22e2dc1c93c791cccd447f56ce3582
3
+ size 14960
checkpoint-63/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f10e46fc0292298e5d18c9f3c68fe4aaa6edbe5b6f4118ecda1eae40d48f7eee
3
+ size 1064
checkpoint-63/special_tokens_map.json ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "▁<PRE>",
4
+ "▁<MID>",
5
+ "▁<SUF>",
6
+ "▁<EOT>"
7
+ ],
8
+ "bos_token": {
9
+ "content": "<s>",
10
+ "lstrip": false,
11
+ "normalized": false,
12
+ "rstrip": false,
13
+ "single_word": false
14
+ },
15
+ "eos_token": {
16
+ "content": "</s>",
17
+ "lstrip": false,
18
+ "normalized": false,
19
+ "rstrip": false,
20
+ "single_word": false
21
+ },
22
+ "pad_token": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false
28
+ },
29
+ "unk_token": {
30
+ "content": "<unk>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false
35
+ }
36
+ }
checkpoint-63/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-63/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:45ccb9c8b6b561889acea59191d66986d314e7cbd6a78abc6e49b139ca91c1e6
3
+ size 500058
checkpoint-63/tokenizer_config.json ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "32007": {
30
+ "content": "▁<PRE>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "32008": {
38
+ "content": "▁<SUF>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "32009": {
46
+ "content": "▁<MID>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "32010": {
54
+ "content": "▁<EOT>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ }
61
+ },
62
+ "additional_special_tokens": [
63
+ "▁<PRE>",
64
+ "▁<MID>",
65
+ "▁<SUF>",
66
+ "▁<EOT>"
67
+ ],
68
+ "bos_token": "<s>",
69
+ "chat_template": "{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}{% set system_message = messages[0]['content'] %}{% else %}{% set loop_messages = messages %}{% set system_message = false %}{% endif %}{% for message in loop_messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if loop.index0 == 0 and system_message != false %}{% set content = '<<SYS>>\\n' + system_message + '\\n<</SYS>>\\n\\n' + message['content'] %}{% else %}{% set content = message['content'] %}{% endif %}{% if message['role'] == 'user' %}{{ bos_token + '[INST] ' + content | trim + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ ' ' + content | trim + ' ' + eos_token }}{% endif %}{% endfor %}",
70
+ "clean_up_tokenization_spaces": false,
71
+ "eos_token": "</s>",
72
+ "eot_token": "▁<EOT>",
73
+ "fill_token": "<FILL_ME>",
74
+ "legacy": null,
75
+ "middle_token": "▁<MID>",
76
+ "model_max_length": 1000000000000000019884624838656,
77
+ "pad_token": "</s>",
78
+ "prefix_token": "▁<PRE>",
79
+ "sp_model_kwargs": {},
80
+ "suffix_token": "▁<SUF>",
81
+ "tokenizer_class": "CodeLlamaTokenizer",
82
+ "unk_token": "<unk>",
83
+ "use_default_system_prompt": false
84
+ }
checkpoint-63/trainer_state.json ADDED
@@ -0,0 +1,506 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.9921259842519685,
5
+ "eval_steps": 16,
6
+ "global_step": 63,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.015748031496062992,
13
+ "grad_norm": 0.034481361508369446,
14
+ "learning_rate": 4e-05,
15
+ "loss": 0.1412,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.015748031496062992,
20
+ "eval_loss": 0.1612786203622818,
21
+ "eval_runtime": 64.5157,
22
+ "eval_samples_per_second": 7.812,
23
+ "eval_steps_per_second": 0.977,
24
+ "step": 1
25
+ },
26
+ {
27
+ "epoch": 0.031496062992125984,
28
+ "grad_norm": 0.029317770153284073,
29
+ "learning_rate": 8e-05,
30
+ "loss": 0.1191,
31
+ "step": 2
32
+ },
33
+ {
34
+ "epoch": 0.047244094488188976,
35
+ "grad_norm": 0.036621659994125366,
36
+ "learning_rate": 0.00012,
37
+ "loss": 0.1369,
38
+ "step": 3
39
+ },
40
+ {
41
+ "epoch": 0.06299212598425197,
42
+ "grad_norm": 0.04425783455371857,
43
+ "learning_rate": 0.00016,
44
+ "loss": 0.1321,
45
+ "step": 4
46
+ },
47
+ {
48
+ "epoch": 0.07874015748031496,
49
+ "grad_norm": 0.05247063934803009,
50
+ "learning_rate": 0.0002,
51
+ "loss": 0.1285,
52
+ "step": 5
53
+ },
54
+ {
55
+ "epoch": 0.09448818897637795,
56
+ "grad_norm": 0.03902214765548706,
57
+ "learning_rate": 0.00019996629653035126,
58
+ "loss": 0.1004,
59
+ "step": 6
60
+ },
61
+ {
62
+ "epoch": 0.11023622047244094,
63
+ "grad_norm": 0.03752463683485985,
64
+ "learning_rate": 0.00019986520883988232,
65
+ "loss": 0.0985,
66
+ "step": 7
67
+ },
68
+ {
69
+ "epoch": 0.12598425196850394,
70
+ "grad_norm": 0.03061060793697834,
71
+ "learning_rate": 0.00019969680506871137,
72
+ "loss": 0.0912,
73
+ "step": 8
74
+ },
75
+ {
76
+ "epoch": 0.14173228346456693,
77
+ "grad_norm": 0.034427180886268616,
78
+ "learning_rate": 0.00019946119873266613,
79
+ "loss": 0.0836,
80
+ "step": 9
81
+ },
82
+ {
83
+ "epoch": 0.15748031496062992,
84
+ "grad_norm": 0.03106631338596344,
85
+ "learning_rate": 0.00019915854864676664,
86
+ "loss": 0.0734,
87
+ "step": 10
88
+ },
89
+ {
90
+ "epoch": 0.1732283464566929,
91
+ "grad_norm": 0.02498232200741768,
92
+ "learning_rate": 0.00019878905881817252,
93
+ "loss": 0.0729,
94
+ "step": 11
95
+ },
96
+ {
97
+ "epoch": 0.1889763779527559,
98
+ "grad_norm": 0.03798564895987511,
99
+ "learning_rate": 0.00019835297830866826,
100
+ "loss": 0.0694,
101
+ "step": 12
102
+ },
103
+ {
104
+ "epoch": 0.2047244094488189,
105
+ "grad_norm": 0.046124912798404694,
106
+ "learning_rate": 0.00019785060106677818,
107
+ "loss": 0.0833,
108
+ "step": 13
109
+ },
110
+ {
111
+ "epoch": 0.2204724409448819,
112
+ "grad_norm": 0.02981509082019329,
113
+ "learning_rate": 0.00019728226572962473,
114
+ "loss": 0.0713,
115
+ "step": 14
116
+ },
117
+ {
118
+ "epoch": 0.23622047244094488,
119
+ "grad_norm": 0.02461801841855049,
120
+ "learning_rate": 0.0001966483553946637,
121
+ "loss": 0.0657,
122
+ "step": 15
123
+ },
124
+ {
125
+ "epoch": 0.25196850393700787,
126
+ "grad_norm": 0.04344266653060913,
127
+ "learning_rate": 0.00019594929736144976,
128
+ "loss": 0.0635,
129
+ "step": 16
130
+ },
131
+ {
132
+ "epoch": 0.25196850393700787,
133
+ "eval_loss": 0.06579381227493286,
134
+ "eval_runtime": 64.6166,
135
+ "eval_samples_per_second": 7.8,
136
+ "eval_steps_per_second": 0.975,
137
+ "step": 16
138
+ },
139
+ {
140
+ "epoch": 0.2677165354330709,
141
+ "grad_norm": 0.0320642925798893,
142
+ "learning_rate": 0.00019518556284360696,
143
+ "loss": 0.0656,
144
+ "step": 17
145
+ },
146
+ {
147
+ "epoch": 0.28346456692913385,
148
+ "grad_norm": 0.028899891301989555,
149
+ "learning_rate": 0.0001943576666511982,
150
+ "loss": 0.0462,
151
+ "step": 18
152
+ },
153
+ {
154
+ "epoch": 0.2992125984251969,
155
+ "grad_norm": 0.02383616380393505,
156
+ "learning_rate": 0.0001934661668437073,
157
+ "loss": 0.0649,
158
+ "step": 19
159
+ },
160
+ {
161
+ "epoch": 0.31496062992125984,
162
+ "grad_norm": 0.03346535563468933,
163
+ "learning_rate": 0.0001925116643538684,
164
+ "loss": 0.0546,
165
+ "step": 20
166
+ },
167
+ {
168
+ "epoch": 0.33070866141732286,
169
+ "grad_norm": 0.020454615354537964,
170
+ "learning_rate": 0.00019149480258259533,
171
+ "loss": 0.0538,
172
+ "step": 21
173
+ },
174
+ {
175
+ "epoch": 0.3464566929133858,
176
+ "grad_norm": 0.02081696316599846,
177
+ "learning_rate": 0.00019041626696528503,
178
+ "loss": 0.0526,
179
+ "step": 22
180
+ },
181
+ {
182
+ "epoch": 0.36220472440944884,
183
+ "grad_norm": 0.028128350153565407,
184
+ "learning_rate": 0.0001892767845097864,
185
+ "loss": 0.0593,
186
+ "step": 23
187
+ },
188
+ {
189
+ "epoch": 0.3779527559055118,
190
+ "grad_norm": 0.015519126318395138,
191
+ "learning_rate": 0.00018807712330634642,
192
+ "loss": 0.0528,
193
+ "step": 24
194
+ },
195
+ {
196
+ "epoch": 0.3937007874015748,
197
+ "grad_norm": 0.03593792766332626,
198
+ "learning_rate": 0.0001868180920098644,
199
+ "loss": 0.0481,
200
+ "step": 25
201
+ },
202
+ {
203
+ "epoch": 0.4094488188976378,
204
+ "grad_norm": 0.015408644452691078,
205
+ "learning_rate": 0.00018550053929480202,
206
+ "loss": 0.0479,
207
+ "step": 26
208
+ },
209
+ {
210
+ "epoch": 0.4251968503937008,
211
+ "grad_norm": 0.021226301789283752,
212
+ "learning_rate": 0.00018412535328311814,
213
+ "loss": 0.054,
214
+ "step": 27
215
+ },
216
+ {
217
+ "epoch": 0.4409448818897638,
218
+ "grad_norm": 0.01717953570187092,
219
+ "learning_rate": 0.0001826934609456129,
220
+ "loss": 0.0523,
221
+ "step": 28
222
+ },
223
+ {
224
+ "epoch": 0.4566929133858268,
225
+ "grad_norm": 0.019626960158348083,
226
+ "learning_rate": 0.00018120582747708502,
227
+ "loss": 0.0512,
228
+ "step": 29
229
+ },
230
+ {
231
+ "epoch": 0.47244094488188976,
232
+ "grad_norm": 0.019186396151781082,
233
+ "learning_rate": 0.0001796634556457236,
234
+ "loss": 0.05,
235
+ "step": 30
236
+ },
237
+ {
238
+ "epoch": 0.4881889763779528,
239
+ "grad_norm": 0.014989328570663929,
240
+ "learning_rate": 0.0001780673851171728,
241
+ "loss": 0.0441,
242
+ "step": 31
243
+ },
244
+ {
245
+ "epoch": 0.5039370078740157,
246
+ "grad_norm": 0.012519012205302715,
247
+ "learning_rate": 0.00017641869175372493,
248
+ "loss": 0.0459,
249
+ "step": 32
250
+ },
251
+ {
252
+ "epoch": 0.5039370078740157,
253
+ "eval_loss": 0.056131936609745026,
254
+ "eval_runtime": 64.4985,
255
+ "eval_samples_per_second": 7.814,
256
+ "eval_steps_per_second": 0.977,
257
+ "step": 32
258
+ },
259
+ {
260
+ "epoch": 0.5196850393700787,
261
+ "grad_norm": 0.01598576456308365,
262
+ "learning_rate": 0.00017471848688911464,
263
+ "loss": 0.0496,
264
+ "step": 33
265
+ },
266
+ {
267
+ "epoch": 0.5354330708661418,
268
+ "grad_norm": 0.017361309379339218,
269
+ "learning_rate": 0.000172967916579403,
270
+ "loss": 0.0534,
271
+ "step": 34
272
+ },
273
+ {
274
+ "epoch": 0.5511811023622047,
275
+ "grad_norm": 0.021230200305581093,
276
+ "learning_rate": 0.00017116816083045602,
277
+ "loss": 0.0505,
278
+ "step": 35
279
+ },
280
+ {
281
+ "epoch": 0.5669291338582677,
282
+ "grad_norm": 0.01624094881117344,
283
+ "learning_rate": 0.0001693204328025389,
284
+ "loss": 0.0568,
285
+ "step": 36
286
+ },
287
+ {
288
+ "epoch": 0.5826771653543307,
289
+ "grad_norm": 0.014916475862264633,
290
+ "learning_rate": 0.00016742597799256182,
291
+ "loss": 0.0542,
292
+ "step": 37
293
+ },
294
+ {
295
+ "epoch": 0.5984251968503937,
296
+ "grad_norm": 0.013211382552981377,
297
+ "learning_rate": 0.00016548607339452853,
298
+ "loss": 0.0507,
299
+ "step": 38
300
+ },
301
+ {
302
+ "epoch": 0.6141732283464567,
303
+ "grad_norm": 0.01305565144866705,
304
+ "learning_rate": 0.00016350202663875386,
305
+ "loss": 0.0387,
306
+ "step": 39
307
+ },
308
+ {
309
+ "epoch": 0.6299212598425197,
310
+ "grad_norm": 0.011459614150226116,
311
+ "learning_rate": 0.0001614751751104301,
312
+ "loss": 0.0433,
313
+ "step": 40
314
+ },
315
+ {
316
+ "epoch": 0.6456692913385826,
317
+ "grad_norm": 0.014712609350681305,
318
+ "learning_rate": 0.00015940688504813662,
319
+ "loss": 0.0571,
320
+ "step": 41
321
+ },
322
+ {
323
+ "epoch": 0.6614173228346457,
324
+ "grad_norm": 0.015662657096982002,
325
+ "learning_rate": 0.00015729855062290022,
326
+ "loss": 0.0504,
327
+ "step": 42
328
+ },
329
+ {
330
+ "epoch": 0.6771653543307087,
331
+ "grad_norm": 0.011235736310482025,
332
+ "learning_rate": 0.00015515159299842707,
333
+ "loss": 0.0453,
334
+ "step": 43
335
+ },
336
+ {
337
+ "epoch": 0.6929133858267716,
338
+ "grad_norm": 0.011984420008957386,
339
+ "learning_rate": 0.00015296745937313987,
340
+ "loss": 0.0402,
341
+ "step": 44
342
+ },
343
+ {
344
+ "epoch": 0.7086614173228346,
345
+ "grad_norm": 0.010523953475058079,
346
+ "learning_rate": 0.00015074762200466556,
347
+ "loss": 0.036,
348
+ "step": 45
349
+ },
350
+ {
351
+ "epoch": 0.7244094488188977,
352
+ "grad_norm": 0.013540665619075298,
353
+ "learning_rate": 0.00014849357721743168,
354
+ "loss": 0.0346,
355
+ "step": 46
356
+ },
357
+ {
358
+ "epoch": 0.7401574803149606,
359
+ "grad_norm": 0.012998640537261963,
360
+ "learning_rate": 0.00014620684439403962,
361
+ "loss": 0.0468,
362
+ "step": 47
363
+ },
364
+ {
365
+ "epoch": 0.7559055118110236,
366
+ "grad_norm": 0.01443515345454216,
367
+ "learning_rate": 0.0001438889649510956,
368
+ "loss": 0.0453,
369
+ "step": 48
370
+ },
371
+ {
372
+ "epoch": 0.7559055118110236,
373
+ "eval_loss": 0.05216333642601967,
374
+ "eval_runtime": 64.5137,
375
+ "eval_samples_per_second": 7.812,
376
+ "eval_steps_per_second": 0.977,
377
+ "step": 48
378
+ },
379
+ {
380
+ "epoch": 0.7716535433070866,
381
+ "grad_norm": 0.01463907677680254,
382
+ "learning_rate": 0.00014154150130018866,
383
+ "loss": 0.0526,
384
+ "step": 49
385
+ },
386
+ {
387
+ "epoch": 0.7874015748031497,
388
+ "grad_norm": 0.01614455319941044,
389
+ "learning_rate": 0.00013916603579471705,
390
+ "loss": 0.0484,
391
+ "step": 50
392
+ },
393
+ {
394
+ "epoch": 0.8031496062992126,
395
+ "grad_norm": 0.014042153023183346,
396
+ "learning_rate": 0.000136764169663272,
397
+ "loss": 0.0419,
398
+ "step": 51
399
+ },
400
+ {
401
+ "epoch": 0.8188976377952756,
402
+ "grad_norm": 0.015309924259781837,
403
+ "learning_rate": 0.00013433752193029886,
404
+ "loss": 0.0425,
405
+ "step": 52
406
+ },
407
+ {
408
+ "epoch": 0.8346456692913385,
409
+ "grad_norm": 0.018054217100143433,
410
+ "learning_rate": 0.00013188772832476188,
411
+ "loss": 0.0426,
412
+ "step": 53
413
+ },
414
+ {
415
+ "epoch": 0.8503937007874016,
416
+ "grad_norm": 0.012343033216893673,
417
+ "learning_rate": 0.00012941644017754964,
418
+ "loss": 0.0448,
419
+ "step": 54
420
+ },
421
+ {
422
+ "epoch": 0.8661417322834646,
423
+ "grad_norm": 0.012457596138119698,
424
+ "learning_rate": 0.00012692532330836346,
425
+ "loss": 0.0451,
426
+ "step": 55
427
+ },
428
+ {
429
+ "epoch": 0.8818897637795275,
430
+ "grad_norm": 0.013512413017451763,
431
+ "learning_rate": 0.00012441605690283915,
432
+ "loss": 0.0413,
433
+ "step": 56
434
+ },
435
+ {
436
+ "epoch": 0.8976377952755905,
437
+ "grad_norm": 0.013424846343696117,
438
+ "learning_rate": 0.0001218903323806595,
439
+ "loss": 0.0441,
440
+ "step": 57
441
+ },
442
+ {
443
+ "epoch": 0.9133858267716536,
444
+ "grad_norm": 0.014157367870211601,
445
+ "learning_rate": 0.00011934985225541998,
446
+ "loss": 0.0443,
447
+ "step": 58
448
+ },
449
+ {
450
+ "epoch": 0.9291338582677166,
451
+ "grad_norm": 0.0130110839381814,
452
+ "learning_rate": 0.00011679632898701649,
453
+ "loss": 0.0478,
454
+ "step": 59
455
+ },
456
+ {
457
+ "epoch": 0.9448818897637795,
458
+ "grad_norm": 0.012677576392889023,
459
+ "learning_rate": 0.00011423148382732853,
460
+ "loss": 0.0399,
461
+ "step": 60
462
+ },
463
+ {
464
+ "epoch": 0.9606299212598425,
465
+ "grad_norm": 0.01409006118774414,
466
+ "learning_rate": 0.00011165704565997593,
467
+ "loss": 0.0481,
468
+ "step": 61
469
+ },
470
+ {
471
+ "epoch": 0.9763779527559056,
472
+ "grad_norm": 0.013535700738430023,
473
+ "learning_rate": 0.00010907474983493144,
474
+ "loss": 0.0406,
475
+ "step": 62
476
+ },
477
+ {
478
+ "epoch": 0.9921259842519685,
479
+ "grad_norm": 0.014210895635187626,
480
+ "learning_rate": 0.0001064863369987743,
481
+ "loss": 0.0425,
482
+ "step": 63
483
+ }
484
+ ],
485
+ "logging_steps": 1,
486
+ "max_steps": 126,
487
+ "num_input_tokens_seen": 0,
488
+ "num_train_epochs": 2,
489
+ "save_steps": 63,
490
+ "stateful_callbacks": {
491
+ "TrainerControl": {
492
+ "args": {
493
+ "should_epoch_stop": false,
494
+ "should_evaluate": false,
495
+ "should_log": false,
496
+ "should_save": true,
497
+ "should_training_stop": false
498
+ },
499
+ "attributes": {}
500
+ }
501
+ },
502
+ "total_flos": 3.3132684787266355e+17,
503
+ "train_batch_size": 2,
504
+ "trial_name": null,
505
+ "trial_params": null
506
+ }
checkpoint-63/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:556c30d4be6c1026c9924962f2173f57a6a22d7e9b29faf92f210c3d41cc0da5
3
+ size 6200
merged/config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "codellama/CodeLlama-7b-Instruct-hf",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "bos_token_id": 1,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "silu",
11
+ "hidden_size": 4096,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 11008,
14
+ "max_position_embeddings": 16384,
15
+ "mlp_bias": false,
16
+ "model_type": "llama",
17
+ "num_attention_heads": 32,
18
+ "num_hidden_layers": 32,
19
+ "num_key_value_heads": 32,
20
+ "pretraining_tp": 1,
21
+ "rms_norm_eps": 1e-05,
22
+ "rope_scaling": null,
23
+ "rope_theta": 1000000,
24
+ "tie_word_embeddings": false,
25
+ "torch_dtype": "bfloat16",
26
+ "transformers_version": "4.42.3",
27
+ "use_cache": false,
28
+ "vocab_size": 32016
29
+ }
merged/generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "do_sample": true,
5
+ "eos_token_id": 2,
6
+ "transformers_version": "4.42.3"
7
+ }
merged/pytorch_model-00001-of-00003.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eec09460c7f705c429989d93b720c45aa303bc258573dccccc8b2d553900ca20
3
+ size 4939140185
merged/pytorch_model-00002-of-00003.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:acf107a99d458db2f568954db24e15c035f64307f7239fa4d5e439bb0444776f
3
+ size 4947415489
merged/pytorch_model-00003-of-00003.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fd2c0e5c89a7867f42c149212e8fd9391e39001278be91c40a0f88daae92c3ae
3
+ size 3590637268
merged/pytorch_model.bin.index.json ADDED
@@ -0,0 +1,298 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 13477093376
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "pytorch_model-00003-of-00003.bin",
7
+ "model.embed_tokens.weight": "pytorch_model-00001-of-00003.bin",
8
+ "model.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
9
+ "model.layers.0.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
10
+ "model.layers.0.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
11
+ "model.layers.0.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
12
+ "model.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
13
+ "model.layers.0.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
14
+ "model.layers.0.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
15
+ "model.layers.0.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
16
+ "model.layers.0.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
17
+ "model.layers.1.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
18
+ "model.layers.1.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
19
+ "model.layers.1.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
20
+ "model.layers.1.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
21
+ "model.layers.1.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
22
+ "model.layers.1.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
23
+ "model.layers.1.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
24
+ "model.layers.1.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
25
+ "model.layers.1.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
26
+ "model.layers.10.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
27
+ "model.layers.10.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
28
+ "model.layers.10.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
29
+ "model.layers.10.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
30
+ "model.layers.10.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
31
+ "model.layers.10.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
32
+ "model.layers.10.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
33
+ "model.layers.10.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
34
+ "model.layers.10.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
35
+ "model.layers.11.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
36
+ "model.layers.11.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
37
+ "model.layers.11.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
38
+ "model.layers.11.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
39
+ "model.layers.11.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
40
+ "model.layers.11.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
41
+ "model.layers.11.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
42
+ "model.layers.11.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
43
+ "model.layers.11.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
44
+ "model.layers.12.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
45
+ "model.layers.12.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
46
+ "model.layers.12.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
47
+ "model.layers.12.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
48
+ "model.layers.12.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
49
+ "model.layers.12.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
50
+ "model.layers.12.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
51
+ "model.layers.12.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
52
+ "model.layers.12.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
53
+ "model.layers.13.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
54
+ "model.layers.13.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
55
+ "model.layers.13.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
56
+ "model.layers.13.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
57
+ "model.layers.13.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
58
+ "model.layers.13.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
59
+ "model.layers.13.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
60
+ "model.layers.13.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
61
+ "model.layers.13.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
62
+ "model.layers.14.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
63
+ "model.layers.14.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
64
+ "model.layers.14.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
65
+ "model.layers.14.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
66
+ "model.layers.14.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
67
+ "model.layers.14.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
68
+ "model.layers.14.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
69
+ "model.layers.14.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
70
+ "model.layers.14.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
71
+ "model.layers.15.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
72
+ "model.layers.15.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
73
+ "model.layers.15.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
74
+ "model.layers.15.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
75
+ "model.layers.15.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
76
+ "model.layers.15.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
77
+ "model.layers.15.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
78
+ "model.layers.15.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
79
+ "model.layers.15.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
80
+ "model.layers.16.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
81
+ "model.layers.16.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
82
+ "model.layers.16.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
83
+ "model.layers.16.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
84
+ "model.layers.16.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
85
+ "model.layers.16.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
86
+ "model.layers.16.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
87
+ "model.layers.16.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
88
+ "model.layers.16.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
89
+ "model.layers.17.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
90
+ "model.layers.17.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
91
+ "model.layers.17.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
92
+ "model.layers.17.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
93
+ "model.layers.17.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
94
+ "model.layers.17.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
95
+ "model.layers.17.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
96
+ "model.layers.17.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
97
+ "model.layers.17.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
98
+ "model.layers.18.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
99
+ "model.layers.18.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
100
+ "model.layers.18.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
101
+ "model.layers.18.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
102
+ "model.layers.18.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
103
+ "model.layers.18.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
104
+ "model.layers.18.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
105
+ "model.layers.18.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
106
+ "model.layers.18.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
107
+ "model.layers.19.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
108
+ "model.layers.19.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
109
+ "model.layers.19.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
110
+ "model.layers.19.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
111
+ "model.layers.19.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
112
+ "model.layers.19.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
113
+ "model.layers.19.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
114
+ "model.layers.19.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
115
+ "model.layers.19.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
116
+ "model.layers.2.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
117
+ "model.layers.2.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
118
+ "model.layers.2.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
119
+ "model.layers.2.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
120
+ "model.layers.2.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
121
+ "model.layers.2.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
122
+ "model.layers.2.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
123
+ "model.layers.2.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
124
+ "model.layers.2.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
125
+ "model.layers.20.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
126
+ "model.layers.20.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
127
+ "model.layers.20.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
128
+ "model.layers.20.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
129
+ "model.layers.20.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
130
+ "model.layers.20.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
131
+ "model.layers.20.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
132
+ "model.layers.20.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
133
+ "model.layers.20.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
134
+ "model.layers.21.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
135
+ "model.layers.21.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
136
+ "model.layers.21.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
137
+ "model.layers.21.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
138
+ "model.layers.21.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
139
+ "model.layers.21.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
140
+ "model.layers.21.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
141
+ "model.layers.21.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
142
+ "model.layers.21.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
143
+ "model.layers.22.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
144
+ "model.layers.22.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
145
+ "model.layers.22.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
146
+ "model.layers.22.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
147
+ "model.layers.22.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
148
+ "model.layers.22.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
149
+ "model.layers.22.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
150
+ "model.layers.22.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
151
+ "model.layers.22.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
152
+ "model.layers.23.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
153
+ "model.layers.23.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
154
+ "model.layers.23.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
155
+ "model.layers.23.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
156
+ "model.layers.23.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
157
+ "model.layers.23.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
158
+ "model.layers.23.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
159
+ "model.layers.23.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
160
+ "model.layers.23.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
161
+ "model.layers.24.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
162
+ "model.layers.24.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
163
+ "model.layers.24.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
164
+ "model.layers.24.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
165
+ "model.layers.24.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
166
+ "model.layers.24.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
167
+ "model.layers.24.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
168
+ "model.layers.24.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
169
+ "model.layers.24.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
170
+ "model.layers.25.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
171
+ "model.layers.25.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
172
+ "model.layers.25.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
173
+ "model.layers.25.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
174
+ "model.layers.25.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
175
+ "model.layers.25.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
176
+ "model.layers.25.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
177
+ "model.layers.25.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
178
+ "model.layers.25.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
179
+ "model.layers.26.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
180
+ "model.layers.26.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
181
+ "model.layers.26.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
182
+ "model.layers.26.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
183
+ "model.layers.26.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
184
+ "model.layers.26.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
185
+ "model.layers.26.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
186
+ "model.layers.26.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
187
+ "model.layers.26.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
188
+ "model.layers.27.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
189
+ "model.layers.27.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
190
+ "model.layers.27.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
191
+ "model.layers.27.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
192
+ "model.layers.27.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
193
+ "model.layers.27.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
194
+ "model.layers.27.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
195
+ "model.layers.27.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
196
+ "model.layers.27.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
197
+ "model.layers.28.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
198
+ "model.layers.28.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
199
+ "model.layers.28.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
200
+ "model.layers.28.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
201
+ "model.layers.28.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
202
+ "model.layers.28.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
203
+ "model.layers.28.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
204
+ "model.layers.28.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
205
+ "model.layers.28.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
206
+ "model.layers.29.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
207
+ "model.layers.29.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
208
+ "model.layers.29.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
209
+ "model.layers.29.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
210
+ "model.layers.29.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
211
+ "model.layers.29.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
212
+ "model.layers.29.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
213
+ "model.layers.29.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
214
+ "model.layers.29.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
215
+ "model.layers.3.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
216
+ "model.layers.3.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
217
+ "model.layers.3.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
218
+ "model.layers.3.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
219
+ "model.layers.3.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
220
+ "model.layers.3.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
221
+ "model.layers.3.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
222
+ "model.layers.3.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
223
+ "model.layers.3.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
224
+ "model.layers.30.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
225
+ "model.layers.30.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
226
+ "model.layers.30.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
227
+ "model.layers.30.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
228
+ "model.layers.30.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
229
+ "model.layers.30.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
230
+ "model.layers.30.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
231
+ "model.layers.30.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
232
+ "model.layers.30.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
233
+ "model.layers.31.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
234
+ "model.layers.31.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
235
+ "model.layers.31.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
236
+ "model.layers.31.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
237
+ "model.layers.31.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
238
+ "model.layers.31.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
239
+ "model.layers.31.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
240
+ "model.layers.31.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
241
+ "model.layers.31.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
242
+ "model.layers.4.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
243
+ "model.layers.4.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
244
+ "model.layers.4.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
245
+ "model.layers.4.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
246
+ "model.layers.4.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
247
+ "model.layers.4.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
248
+ "model.layers.4.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
249
+ "model.layers.4.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
250
+ "model.layers.4.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
251
+ "model.layers.5.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
252
+ "model.layers.5.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
253
+ "model.layers.5.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
254
+ "model.layers.5.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
255
+ "model.layers.5.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
256
+ "model.layers.5.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
257
+ "model.layers.5.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
258
+ "model.layers.5.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
259
+ "model.layers.5.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
260
+ "model.layers.6.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
261
+ "model.layers.6.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
262
+ "model.layers.6.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
263
+ "model.layers.6.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
264
+ "model.layers.6.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
265
+ "model.layers.6.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
266
+ "model.layers.6.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
267
+ "model.layers.6.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
268
+ "model.layers.6.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
269
+ "model.layers.7.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
270
+ "model.layers.7.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
271
+ "model.layers.7.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
272
+ "model.layers.7.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
273
+ "model.layers.7.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
274
+ "model.layers.7.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
275
+ "model.layers.7.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
276
+ "model.layers.7.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
277
+ "model.layers.7.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
278
+ "model.layers.8.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
279
+ "model.layers.8.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
280
+ "model.layers.8.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
281
+ "model.layers.8.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
282
+ "model.layers.8.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
283
+ "model.layers.8.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
284
+ "model.layers.8.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
285
+ "model.layers.8.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
286
+ "model.layers.8.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
287
+ "model.layers.9.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
288
+ "model.layers.9.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
289
+ "model.layers.9.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
290
+ "model.layers.9.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
291
+ "model.layers.9.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
292
+ "model.layers.9.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
293
+ "model.layers.9.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
294
+ "model.layers.9.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
295
+ "model.layers.9.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
296
+ "model.norm.weight": "pytorch_model-00003-of-00003.bin"
297
+ }
298
+ }
merged/special_tokens_map.json ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "▁<PRE>",
4
+ "▁<MID>",
5
+ "▁<SUF>",
6
+ "▁<EOT>"
7
+ ],
8
+ "bos_token": {
9
+ "content": "<s>",
10
+ "lstrip": false,
11
+ "normalized": false,
12
+ "rstrip": false,
13
+ "single_word": false
14
+ },
15
+ "eos_token": {
16
+ "content": "</s>",
17
+ "lstrip": false,
18
+ "normalized": false,
19
+ "rstrip": false,
20
+ "single_word": false
21
+ },
22
+ "pad_token": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false
28
+ },
29
+ "unk_token": {
30
+ "content": "<unk>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false
35
+ }
36
+ }
merged/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
merged/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:45ccb9c8b6b561889acea59191d66986d314e7cbd6a78abc6e49b139ca91c1e6
3
+ size 500058
merged/tokenizer_config.json ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "32007": {
30
+ "content": "▁<PRE>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "32008": {
38
+ "content": "▁<SUF>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "32009": {
46
+ "content": "▁<MID>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "32010": {
54
+ "content": "▁<EOT>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ }
61
+ },
62
+ "additional_special_tokens": [
63
+ "▁<PRE>",
64
+ "▁<MID>",
65
+ "▁<SUF>",
66
+ "▁<EOT>"
67
+ ],
68
+ "bos_token": "<s>",
69
+ "chat_template": "{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}{% set system_message = messages[0]['content'] %}{% else %}{% set loop_messages = messages %}{% set system_message = false %}{% endif %}{% for message in loop_messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if loop.index0 == 0 and system_message != false %}{% set content = '<<SYS>>\\n' + system_message + '\\n<</SYS>>\\n\\n' + message['content'] %}{% else %}{% set content = message['content'] %}{% endif %}{% if message['role'] == 'user' %}{{ bos_token + '[INST] ' + content | trim + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ ' ' + content | trim + ' ' + eos_token }}{% endif %}{% endfor %}",
70
+ "clean_up_tokenization_spaces": false,
71
+ "eos_token": "</s>",
72
+ "eot_token": "▁<EOT>",
73
+ "fill_token": "<FILL_ME>",
74
+ "legacy": null,
75
+ "middle_token": "▁<MID>",
76
+ "model_max_length": 1000000000000000019884624838656,
77
+ "pad_token": "</s>",
78
+ "prefix_token": "▁<PRE>",
79
+ "sp_model_kwargs": {},
80
+ "suffix_token": "▁<SUF>",
81
+ "tokenizer_class": "CodeLlamaTokenizer",
82
+ "unk_token": "<unk>",
83
+ "use_default_system_prompt": false
84
+ }