--- license: llama2 library_name: peft tags: - axolotl - generated_from_trainer base_model: codellama/CodeLlama-7b-Instruct-hf model-index: - name: taopanda-3_b82cc4a3-a6de-4f53-a886-01e75f988ae4 results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: codellama/CodeLlama-7b-Instruct-hf bf16: auto datasets: - data_files: - 08fb4954d2e54910_train_data.json ds_type: json format: custom path: 08fb4954d2e54910_train_data.json type: field: null field_input: null field_instruction: prompt field_output: chosen field_system: null format: null no_input_format: null system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_sample_packing: false eval_table_size: null evals_per_epoch: 4 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: false hub_model_id: FatCat87/taopanda-3_b82cc4a3-a6de-4f53-a886-01e75f988ae4 learning_rate: 0.0002 load_in_4bit: false load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_r: 32 lora_target_linear: true lr_scheduler: cosine micro_batch_size: 2 model_type: AutoModelForCausalLM num_epochs: 2 optimizer: adamw_bnb_8bit output_dir: ./outputs/out/taopanda-3_b82cc4a3-a6de-4f53-a886-01e75f988ae4 pad_to_sequence_len: true resume_from_checkpoint: null sample_packing: true saves_per_epoch: 1 seed: 37417 sequence_len: 4096 special_tokens: pad_token: strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.1 wandb_entity: fatcat87-taopanda wandb_log_model: null wandb_mode: online wandb_name: taopanda-3_b82cc4a3-a6de-4f53-a886-01e75f988ae4 wandb_project: subnet56 wandb_runid: taopanda-3_b82cc4a3-a6de-4f53-a886-01e75f988ae4 wandb_watch: null warmup_ratio: 0.05 weight_decay: 0.0 xformers_attention: null ```

[Visualize in Weights & Biases](https://wandb.ai/fatcat87-taopanda/subnet56/runs/mvlfr6qs) # taopanda-3_b82cc4a3-a6de-4f53-a886-01e75f988ae4 This model is a fine-tuned version of [codellama/CodeLlama-7b-Instruct-hf](https://huggingface.co/codellama/CodeLlama-7b-Instruct-hf) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0467 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 37417 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - total_eval_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.1412 | 0.0157 | 1 | 0.1613 | | 0.0635 | 0.2520 | 16 | 0.0658 | | 0.0459 | 0.5039 | 32 | 0.0561 | | 0.0453 | 0.7559 | 48 | 0.0522 | | 0.0483 | 1.0079 | 64 | 0.0497 | | 0.0366 | 1.2323 | 80 | 0.0483 | | 0.0408 | 1.4843 | 96 | 0.0472 | | 0.0363 | 1.7362 | 112 | 0.0467 | ### Framework versions - PEFT 0.11.1 - Transformers 4.42.3 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1