File size: 6,909 Bytes
4e3cd77 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
import timm
import torch
import types
import numpy as np
import torch.nn.functional as F
from .utils import forward_adapted_unflatten, make_backbone_default
from timm.models.beit import gen_relative_position_index
from torch.utils.checkpoint import checkpoint
from typing import Optional
def forward_beit(pretrained, x):
return forward_adapted_unflatten(pretrained, x, "forward_features")
def patch_embed_forward(self, x):
"""
Modification of timm.models.layers.patch_embed.py: PatchEmbed.forward to support arbitrary window sizes.
"""
x = self.proj(x)
if self.flatten:
x = x.flatten(2).transpose(1, 2)
x = self.norm(x)
return x
def _get_rel_pos_bias(self, window_size):
"""
Modification of timm.models.beit.py: Attention._get_rel_pos_bias to support arbitrary window sizes.
"""
old_height = 2 * self.window_size[0] - 1
old_width = 2 * self.window_size[1] - 1
new_height = 2 * window_size[0] - 1
new_width = 2 * window_size[1] - 1
old_relative_position_bias_table = self.relative_position_bias_table
old_num_relative_distance = self.num_relative_distance
new_num_relative_distance = new_height * new_width + 3
old_sub_table = old_relative_position_bias_table[:old_num_relative_distance - 3]
old_sub_table = old_sub_table.reshape(1, old_width, old_height, -1).permute(0, 3, 1, 2)
new_sub_table = F.interpolate(old_sub_table, size=(new_height, new_width), mode="bilinear")
new_sub_table = new_sub_table.permute(0, 2, 3, 1).reshape(new_num_relative_distance - 3, -1)
new_relative_position_bias_table = torch.cat(
[new_sub_table, old_relative_position_bias_table[old_num_relative_distance - 3:]])
key = str(window_size[1]) + "," + str(window_size[0])
if key not in self.relative_position_indices.keys():
self.relative_position_indices[key] = gen_relative_position_index(window_size)
relative_position_bias = new_relative_position_bias_table[
self.relative_position_indices[key].view(-1)].view(
window_size[0] * window_size[1] + 1,
window_size[0] * window_size[1] + 1, -1) # Wh*Ww,Wh*Ww,nH
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
return relative_position_bias.unsqueeze(0)
def attention_forward(self, x, resolution, shared_rel_pos_bias: Optional[torch.Tensor] = None):
"""
Modification of timm.models.beit.py: Attention.forward to support arbitrary window sizes.
"""
B, N, C = x.shape
qkv_bias = torch.cat((self.q_bias, self.k_bias, self.v_bias)) if self.q_bias is not None else None
qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias)
qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple)
q = q * self.scale
attn = (q @ k.transpose(-2, -1))
if self.relative_position_bias_table is not None:
window_size = tuple(np.array(resolution) // 16)
attn = attn + self._get_rel_pos_bias(window_size)
if shared_rel_pos_bias is not None:
attn = attn + shared_rel_pos_bias
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, -1)
x = self.proj(x)
x = self.proj_drop(x)
return x
def block_forward(self, x, resolution, shared_rel_pos_bias: Optional[torch.Tensor] = None):
"""
Modification of timm.models.beit.py: Block.forward to support arbitrary window sizes.
"""
if self.gamma_1 is None:
x = x + self.drop_path(self.attn(self.norm1(x), resolution, shared_rel_pos_bias=shared_rel_pos_bias))
x = x + self.drop_path(self.mlp(self.norm2(x)))
else:
x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x), resolution,
shared_rel_pos_bias=shared_rel_pos_bias))
x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x)))
return x
def beit_forward_features(self, x):
"""
Modification of timm.models.beit.py: Beit.forward_features to support arbitrary window sizes.
"""
resolution = x.shape[2:]
x = self.patch_embed(x)
x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1)
if self.pos_embed is not None:
x = x + self.pos_embed
x = self.pos_drop(x)
rel_pos_bias = self.rel_pos_bias() if self.rel_pos_bias is not None else None
for blk in self.blocks:
if self.grad_checkpointing and not torch.jit.is_scripting():
x = checkpoint(blk, x, shared_rel_pos_bias=rel_pos_bias)
else:
x = blk(x, resolution, shared_rel_pos_bias=rel_pos_bias)
x = self.norm(x)
return x
def _make_beit_backbone(
model,
features=[96, 192, 384, 768],
size=[384, 384],
hooks=[0, 4, 8, 11],
vit_features=768,
use_readout="ignore",
start_index=1,
start_index_readout=1,
):
backbone = make_backbone_default(model, features, size, hooks, vit_features, use_readout, start_index,
start_index_readout)
backbone.model.patch_embed.forward = types.MethodType(patch_embed_forward, backbone.model.patch_embed)
backbone.model.forward_features = types.MethodType(beit_forward_features, backbone.model)
for block in backbone.model.blocks:
attn = block.attn
attn._get_rel_pos_bias = types.MethodType(_get_rel_pos_bias, attn)
attn.forward = types.MethodType(attention_forward, attn)
attn.relative_position_indices = {}
block.forward = types.MethodType(block_forward, block)
return backbone
def _make_pretrained_beitl16_512(pretrained, use_readout="ignore", hooks=None):
model = timm.create_model("beit_large_patch16_512", pretrained=pretrained)
hooks = [5, 11, 17, 23] if hooks is None else hooks
features = [256, 512, 1024, 1024]
return _make_beit_backbone(
model,
features=features,
size=[512, 512],
hooks=hooks,
vit_features=1024,
use_readout=use_readout,
)
def _make_pretrained_beitl16_384(pretrained, use_readout="ignore", hooks=None):
model = timm.create_model("beit_large_patch16_384", pretrained=pretrained)
hooks = [5, 11, 17, 23] if hooks is None else hooks
return _make_beit_backbone(
model,
features=[256, 512, 1024, 1024],
hooks=hooks,
vit_features=1024,
use_readout=use_readout,
)
def _make_pretrained_beitb16_384(pretrained, use_readout="ignore", hooks=None):
model = timm.create_model("beit_base_patch16_384", pretrained=pretrained)
hooks = [2, 5, 8, 11] if hooks is None else hooks
return _make_beit_backbone(
model,
features=[96, 192, 384, 768],
hooks=hooks,
use_readout=use_readout,
)
|