File size: 11,278 Bytes
4e3cd77 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 |
"""Compute depth maps for images in the input folder.
"""
import os
import glob
import torch
import utils
import cv2
import argparse
import time
import numpy as np
from imutils.video import VideoStream
from midas.model_loader import default_models, load_model
first_execution = True
def process(device, model, model_type, image, input_size, target_size, optimize, use_camera):
"""
Run the inference and interpolate.
Args:
device (torch.device): the torch device used
model: the model used for inference
model_type: the type of the model
image: the image fed into the neural network
input_size: the size (width, height) of the neural network input (for OpenVINO)
target_size: the size (width, height) the neural network output is interpolated to
optimize: optimize the model to half-floats on CUDA?
use_camera: is the camera used?
Returns:
the prediction
"""
global first_execution
if "openvino" in model_type:
if first_execution or not use_camera:
print(f" Input resized to {input_size[0]}x{input_size[1]} before entering the encoder")
first_execution = False
sample = [np.reshape(image, (1, 3, *input_size))]
prediction = model(sample)[model.output(0)][0]
prediction = cv2.resize(prediction, dsize=target_size,
interpolation=cv2.INTER_CUBIC)
else:
sample = torch.from_numpy(image).to(device).unsqueeze(0)
if optimize and device == torch.device("cuda"):
if first_execution:
print(" Optimization to half-floats activated. Use with caution, because models like Swin require\n"
" float precision to work properly and may yield non-finite depth values to some extent for\n"
" half-floats.")
sample = sample.to(memory_format=torch.channels_last)
sample = sample.half()
if first_execution or not use_camera:
height, width = sample.shape[2:]
print(f" Input resized to {width}x{height} before entering the encoder")
first_execution = False
prediction = model.forward(sample)
prediction = (
torch.nn.functional.interpolate(
prediction.unsqueeze(1),
size=target_size[::-1],
mode="bicubic",
align_corners=False,
)
.squeeze()
.cpu()
.numpy()
)
return prediction
def create_side_by_side(image, depth, grayscale):
"""
Take an RGB image and depth map and place them side by side. This includes a proper normalization of the depth map
for better visibility.
Args:
image: the RGB image
depth: the depth map
grayscale: use a grayscale colormap?
Returns:
the image and depth map place side by side
"""
depth_min = depth.min()
depth_max = depth.max()
normalized_depth = 255 * (depth - depth_min) / (depth_max - depth_min)
normalized_depth *= 3
right_side = np.repeat(np.expand_dims(normalized_depth, 2), 3, axis=2) / 3
if not grayscale:
right_side = cv2.applyColorMap(np.uint8(right_side), cv2.COLORMAP_INFERNO)
if image is None:
return right_side
else:
return np.concatenate((image, right_side), axis=1)
def run(input_path, output_path, model_path, model_type="dpt_beit_large_512", optimize=False, side=False, height=None,
square=False, grayscale=False):
"""Run MonoDepthNN to compute depth maps.
Args:
input_path (str): path to input folder
output_path (str): path to output folder
model_path (str): path to saved model
model_type (str): the model type
optimize (bool): optimize the model to half-floats on CUDA?
side (bool): RGB and depth side by side in output images?
height (int): inference encoder image height
square (bool): resize to a square resolution?
grayscale (bool): use a grayscale colormap?
"""
print("Initialize")
# select device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print("Device: %s" % device)
model, transform, net_w, net_h = load_model(device, model_path, model_type, optimize, height, square)
# get input
if input_path is not None:
image_names = glob.glob(os.path.join(input_path, "*"))
num_images = len(image_names)
else:
print("No input path specified. Grabbing images from camera.")
# create output folder
if output_path is not None:
os.makedirs(output_path, exist_ok=True)
print("Start processing")
if input_path is not None:
if output_path is None:
print("Warning: No output path specified. Images will be processed but not shown or stored anywhere.")
for index, image_name in enumerate(image_names):
print(" Processing {} ({}/{})".format(image_name, index + 1, num_images))
# input
original_image_rgb = utils.read_image(image_name) # in [0, 1]
image = transform({"image": original_image_rgb})["image"]
# compute
with torch.no_grad():
prediction = process(device, model, model_type, image, (net_w, net_h), original_image_rgb.shape[1::-1],
optimize, False)
# output
if output_path is not None:
filename = os.path.join(
output_path, os.path.splitext(os.path.basename(image_name))[0] + '-' + model_type
)
if not side:
utils.write_depth(filename, prediction, grayscale, bits=2)
else:
original_image_bgr = np.flip(original_image_rgb, 2)
content = create_side_by_side(original_image_bgr*255, prediction, grayscale)
cv2.imwrite(filename + ".png", content)
utils.write_pfm(filename + ".pfm", prediction.astype(np.float32))
else:
with torch.no_grad():
fps = 1
video = VideoStream(0).start()
time_start = time.time()
frame_index = 0
while True:
frame = video.read()
if frame is not None:
original_image_rgb = np.flip(frame, 2) # in [0, 255] (flip required to get RGB)
image = transform({"image": original_image_rgb/255})["image"]
prediction = process(device, model, model_type, image, (net_w, net_h),
original_image_rgb.shape[1::-1], optimize, True)
original_image_bgr = np.flip(original_image_rgb, 2) if side else None
content = create_side_by_side(original_image_bgr, prediction, grayscale)
cv2.imshow('MiDaS Depth Estimation - Press Escape to close window ', content/255)
if output_path is not None:
filename = os.path.join(output_path, 'Camera' + '-' + model_type + '_' + str(frame_index))
cv2.imwrite(filename + ".png", content)
alpha = 0.1
if time.time()-time_start > 0:
fps = (1 - alpha) * fps + alpha * 1 / (time.time()-time_start) # exponential moving average
time_start = time.time()
print(f"\rFPS: {round(fps,2)}", end="")
if cv2.waitKey(1) == 27: # Escape key
break
frame_index += 1
print()
print("Finished")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('-i', '--input_path',
default=None,
help='Folder with input images (if no input path is specified, images are tried to be grabbed '
'from camera)'
)
parser.add_argument('-o', '--output_path',
default=None,
help='Folder for output images'
)
parser.add_argument('-m', '--model_weights',
default=None,
help='Path to the trained weights of model'
)
parser.add_argument('-t', '--model_type',
default='dpt_beit_large_512',
help='Model type: '
'dpt_beit_large_512, dpt_beit_large_384, dpt_beit_base_384, dpt_swin2_large_384, '
'dpt_swin2_base_384, dpt_swin2_tiny_256, dpt_swin_large_384, dpt_next_vit_large_384, '
'dpt_levit_224, dpt_large_384, dpt_hybrid_384, midas_v21_384, midas_v21_small_256 or '
'openvino_midas_v21_small_256'
)
parser.add_argument('-s', '--side',
action='store_true',
help='Output images contain RGB and depth images side by side'
)
parser.add_argument('--optimize', dest='optimize', action='store_true', help='Use half-float optimization')
parser.set_defaults(optimize=False)
parser.add_argument('--height',
type=int, default=None,
help='Preferred height of images feed into the encoder during inference. Note that the '
'preferred height may differ from the actual height, because an alignment to multiples of '
'32 takes place. Many models support only the height chosen during training, which is '
'used automatically if this parameter is not set.'
)
parser.add_argument('--square',
action='store_true',
help='Option to resize images to a square resolution by changing their widths when images are '
'fed into the encoder during inference. If this parameter is not set, the aspect ratio of '
'images is tried to be preserved if supported by the model.'
)
parser.add_argument('--grayscale',
action='store_true',
help='Use a grayscale colormap instead of the inferno one. Although the inferno colormap, '
'which is used by default, is better for visibility, it does not allow storing 16-bit '
'depth values in PNGs but only 8-bit ones due to the precision limitation of this '
'colormap.'
)
args = parser.parse_args()
if args.model_weights is None:
args.model_weights = default_models[args.model_type]
# set torch options
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = True
# compute depth maps
run(args.input_path, args.output_path, args.model_weights, args.model_type, args.optimize, args.side, args.height,
args.square, args.grayscale)
|