MapleBG / MiDaS-master /hubconf.py
FazeNCode's picture
Upload 190 files
4e3cd77
dependencies = ["torch"]
import torch
from midas.dpt_depth import DPTDepthModel
from midas.midas_net import MidasNet
from midas.midas_net_custom import MidasNet_small
def DPT_BEiT_L_512(pretrained=True, **kwargs):
""" # This docstring shows up in hub.help()
MiDaS DPT_BEiT_L_512 model for monocular depth estimation
pretrained (bool): load pretrained weights into model
"""
model = DPTDepthModel(
path=None,
backbone="beitl16_512",
non_negative=True,
)
if pretrained:
checkpoint = (
"https://github.com/isl-org/MiDaS/releases/download/v3_1/dpt_beit_large_512.pt"
)
state_dict = torch.hub.load_state_dict_from_url(
checkpoint, map_location=torch.device('cpu'), progress=True, check_hash=True
)
model.load_state_dict(state_dict)
return model
def DPT_BEiT_L_384(pretrained=True, **kwargs):
""" # This docstring shows up in hub.help()
MiDaS DPT_BEiT_L_384 model for monocular depth estimation
pretrained (bool): load pretrained weights into model
"""
model = DPTDepthModel(
path=None,
backbone="beitl16_384",
non_negative=True,
)
if pretrained:
checkpoint = (
"https://github.com/isl-org/MiDaS/releases/download/v3_1/dpt_beit_large_384.pt"
)
state_dict = torch.hub.load_state_dict_from_url(
checkpoint, map_location=torch.device('cpu'), progress=True, check_hash=True
)
model.load_state_dict(state_dict)
return model
def DPT_BEiT_B_384(pretrained=True, **kwargs):
""" # This docstring shows up in hub.help()
MiDaS DPT_BEiT_B_384 model for monocular depth estimation
pretrained (bool): load pretrained weights into model
"""
model = DPTDepthModel(
path=None,
backbone="beitb16_384",
non_negative=True,
)
if pretrained:
checkpoint = (
"https://github.com/isl-org/MiDaS/releases/download/v3_1/dpt_beit_base_384.pt"
)
state_dict = torch.hub.load_state_dict_from_url(
checkpoint, map_location=torch.device('cpu'), progress=True, check_hash=True
)
model.load_state_dict(state_dict)
return model
def DPT_SwinV2_L_384(pretrained=True, **kwargs):
""" # This docstring shows up in hub.help()
MiDaS DPT_SwinV2_L_384 model for monocular depth estimation
pretrained (bool): load pretrained weights into model
"""
model = DPTDepthModel(
path=None,
backbone="swin2l24_384",
non_negative=True,
)
if pretrained:
checkpoint = (
"https://github.com/isl-org/MiDaS/releases/download/v3_1/dpt_swin2_large_384.pt"
)
state_dict = torch.hub.load_state_dict_from_url(
checkpoint, map_location=torch.device('cpu'), progress=True, check_hash=True
)
model.load_state_dict(state_dict)
return model
def DPT_SwinV2_B_384(pretrained=True, **kwargs):
""" # This docstring shows up in hub.help()
MiDaS DPT_SwinV2_B_384 model for monocular depth estimation
pretrained (bool): load pretrained weights into model
"""
model = DPTDepthModel(
path=None,
backbone="swin2b24_384",
non_negative=True,
)
if pretrained:
checkpoint = (
"https://github.com/isl-org/MiDaS/releases/download/v3_1/dpt_swin2_base_384.pt"
)
state_dict = torch.hub.load_state_dict_from_url(
checkpoint, map_location=torch.device('cpu'), progress=True, check_hash=True
)
model.load_state_dict(state_dict)
return model
def DPT_SwinV2_T_256(pretrained=True, **kwargs):
""" # This docstring shows up in hub.help()
MiDaS DPT_SwinV2_T_256 model for monocular depth estimation
pretrained (bool): load pretrained weights into model
"""
model = DPTDepthModel(
path=None,
backbone="swin2t16_256",
non_negative=True,
)
if pretrained:
checkpoint = (
"https://github.com/isl-org/MiDaS/releases/download/v3_1/dpt_swin2_tiny_256.pt"
)
state_dict = torch.hub.load_state_dict_from_url(
checkpoint, map_location=torch.device('cpu'), progress=True, check_hash=True
)
model.load_state_dict(state_dict)
return model
def DPT_Swin_L_384(pretrained=True, **kwargs):
""" # This docstring shows up in hub.help()
MiDaS DPT_Swin_L_384 model for monocular depth estimation
pretrained (bool): load pretrained weights into model
"""
model = DPTDepthModel(
path=None,
backbone="swinl12_384",
non_negative=True,
)
if pretrained:
checkpoint = (
"https://github.com/isl-org/MiDaS/releases/download/v3_1/dpt_swin_large_384.pt"
)
state_dict = torch.hub.load_state_dict_from_url(
checkpoint, map_location=torch.device('cpu'), progress=True, check_hash=True
)
model.load_state_dict(state_dict)
return model
def DPT_Next_ViT_L_384(pretrained=True, **kwargs):
""" # This docstring shows up in hub.help()
MiDaS DPT_Next_ViT_L_384 model for monocular depth estimation
pretrained (bool): load pretrained weights into model
"""
model = DPTDepthModel(
path=None,
backbone="next_vit_large_6m",
non_negative=True,
)
if pretrained:
checkpoint = (
"https://github.com/isl-org/MiDaS/releases/download/v3_1/dpt_next_vit_large_384.pt"
)
state_dict = torch.hub.load_state_dict_from_url(
checkpoint, map_location=torch.device('cpu'), progress=True, check_hash=True
)
model.load_state_dict(state_dict)
return model
def DPT_LeViT_224(pretrained=True, **kwargs):
""" # This docstring shows up in hub.help()
MiDaS DPT_LeViT_224 model for monocular depth estimation
pretrained (bool): load pretrained weights into model
"""
model = DPTDepthModel(
path=None,
backbone="levit_384",
non_negative=True,
head_features_1=64,
head_features_2=8,
)
if pretrained:
checkpoint = (
"https://github.com/isl-org/MiDaS/releases/download/v3_1/dpt_levit_224.pt"
)
state_dict = torch.hub.load_state_dict_from_url(
checkpoint, map_location=torch.device('cpu'), progress=True, check_hash=True
)
model.load_state_dict(state_dict)
return model
def DPT_Large(pretrained=True, **kwargs):
""" # This docstring shows up in hub.help()
MiDaS DPT-Large model for monocular depth estimation
pretrained (bool): load pretrained weights into model
"""
model = DPTDepthModel(
path=None,
backbone="vitl16_384",
non_negative=True,
)
if pretrained:
checkpoint = (
"https://github.com/isl-org/MiDaS/releases/download/v3/dpt_large_384.pt"
)
state_dict = torch.hub.load_state_dict_from_url(
checkpoint, map_location=torch.device('cpu'), progress=True, check_hash=True
)
model.load_state_dict(state_dict)
return model
def DPT_Hybrid(pretrained=True, **kwargs):
""" # This docstring shows up in hub.help()
MiDaS DPT-Hybrid model for monocular depth estimation
pretrained (bool): load pretrained weights into model
"""
model = DPTDepthModel(
path=None,
backbone="vitb_rn50_384",
non_negative=True,
)
if pretrained:
checkpoint = (
"https://github.com/isl-org/MiDaS/releases/download/v3/dpt_hybrid_384.pt"
)
state_dict = torch.hub.load_state_dict_from_url(
checkpoint, map_location=torch.device('cpu'), progress=True, check_hash=True
)
model.load_state_dict(state_dict)
return model
def MiDaS(pretrained=True, **kwargs):
""" # This docstring shows up in hub.help()
MiDaS v2.1 model for monocular depth estimation
pretrained (bool): load pretrained weights into model
"""
model = MidasNet()
if pretrained:
checkpoint = (
"https://github.com/isl-org/MiDaS/releases/download/v2_1/midas_v21_384.pt"
)
state_dict = torch.hub.load_state_dict_from_url(
checkpoint, map_location=torch.device('cpu'), progress=True, check_hash=True
)
model.load_state_dict(state_dict)
return model
def MiDaS_small(pretrained=True, **kwargs):
""" # This docstring shows up in hub.help()
MiDaS v2.1 small model for monocular depth estimation on resource-constrained devices
pretrained (bool): load pretrained weights into model
"""
model = MidasNet_small(None, features=64, backbone="efficientnet_lite3", exportable=True, non_negative=True, blocks={'expand': True})
if pretrained:
checkpoint = (
"https://github.com/isl-org/MiDaS/releases/download/v2_1/midas_v21_small_256.pt"
)
state_dict = torch.hub.load_state_dict_from_url(
checkpoint, map_location=torch.device('cpu'), progress=True, check_hash=True
)
model.load_state_dict(state_dict)
return model
def transforms():
import cv2
from torchvision.transforms import Compose
from midas.transforms import Resize, NormalizeImage, PrepareForNet
from midas import transforms
transforms.default_transform = Compose(
[
lambda img: {"image": img / 255.0},
Resize(
384,
384,
resize_target=None,
keep_aspect_ratio=True,
ensure_multiple_of=32,
resize_method="upper_bound",
image_interpolation_method=cv2.INTER_CUBIC,
),
NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
PrepareForNet(),
lambda sample: torch.from_numpy(sample["image"]).unsqueeze(0),
]
)
transforms.small_transform = Compose(
[
lambda img: {"image": img / 255.0},
Resize(
256,
256,
resize_target=None,
keep_aspect_ratio=True,
ensure_multiple_of=32,
resize_method="upper_bound",
image_interpolation_method=cv2.INTER_CUBIC,
),
NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
PrepareForNet(),
lambda sample: torch.from_numpy(sample["image"]).unsqueeze(0),
]
)
transforms.dpt_transform = Compose(
[
lambda img: {"image": img / 255.0},
Resize(
384,
384,
resize_target=None,
keep_aspect_ratio=True,
ensure_multiple_of=32,
resize_method="minimal",
image_interpolation_method=cv2.INTER_CUBIC,
),
NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
PrepareForNet(),
lambda sample: torch.from_numpy(sample["image"]).unsqueeze(0),
]
)
transforms.beit512_transform = Compose(
[
lambda img: {"image": img / 255.0},
Resize(
512,
512,
resize_target=None,
keep_aspect_ratio=True,
ensure_multiple_of=32,
resize_method="minimal",
image_interpolation_method=cv2.INTER_CUBIC,
),
NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
PrepareForNet(),
lambda sample: torch.from_numpy(sample["image"]).unsqueeze(0),
]
)
transforms.swin384_transform = Compose(
[
lambda img: {"image": img / 255.0},
Resize(
384,
384,
resize_target=None,
keep_aspect_ratio=False,
ensure_multiple_of=32,
resize_method="minimal",
image_interpolation_method=cv2.INTER_CUBIC,
),
NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
PrepareForNet(),
lambda sample: torch.from_numpy(sample["image"]).unsqueeze(0),
]
)
transforms.swin256_transform = Compose(
[
lambda img: {"image": img / 255.0},
Resize(
256,
256,
resize_target=None,
keep_aspect_ratio=False,
ensure_multiple_of=32,
resize_method="minimal",
image_interpolation_method=cv2.INTER_CUBIC,
),
NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
PrepareForNet(),
lambda sample: torch.from_numpy(sample["image"]).unsqueeze(0),
]
)
transforms.levit_transform = Compose(
[
lambda img: {"image": img / 255.0},
Resize(
224,
224,
resize_target=None,
keep_aspect_ratio=False,
ensure_multiple_of=32,
resize_method="minimal",
image_interpolation_method=cv2.INTER_CUBIC,
),
NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
PrepareForNet(),
lambda sample: torch.from_numpy(sample["image"]).unsqueeze(0),
]
)
return transforms