|
import torch |
|
import torch.nn as nn |
|
import timm |
|
import types |
|
import math |
|
import torch.nn.functional as F |
|
|
|
from .utils import (activations, forward_adapted_unflatten, get_activation, get_readout_oper, |
|
make_backbone_default, Transpose) |
|
|
|
|
|
def forward_vit(pretrained, x): |
|
return forward_adapted_unflatten(pretrained, x, "forward_flex") |
|
|
|
|
|
def _resize_pos_embed(self, posemb, gs_h, gs_w): |
|
posemb_tok, posemb_grid = ( |
|
posemb[:, : self.start_index], |
|
posemb[0, self.start_index:], |
|
) |
|
|
|
gs_old = int(math.sqrt(len(posemb_grid))) |
|
|
|
posemb_grid = posemb_grid.reshape(1, gs_old, gs_old, -1).permute(0, 3, 1, 2) |
|
posemb_grid = F.interpolate(posemb_grid, size=(gs_h, gs_w), mode="bilinear") |
|
posemb_grid = posemb_grid.permute(0, 2, 3, 1).reshape(1, gs_h * gs_w, -1) |
|
|
|
posemb = torch.cat([posemb_tok, posemb_grid], dim=1) |
|
|
|
return posemb |
|
|
|
|
|
def forward_flex(self, x): |
|
b, c, h, w = x.shape |
|
|
|
pos_embed = self._resize_pos_embed( |
|
self.pos_embed, h // self.patch_size[1], w // self.patch_size[0] |
|
) |
|
|
|
B = x.shape[0] |
|
|
|
if hasattr(self.patch_embed, "backbone"): |
|
x = self.patch_embed.backbone(x) |
|
if isinstance(x, (list, tuple)): |
|
x = x[-1] |
|
|
|
x = self.patch_embed.proj(x).flatten(2).transpose(1, 2) |
|
|
|
if getattr(self, "dist_token", None) is not None: |
|
cls_tokens = self.cls_token.expand( |
|
B, -1, -1 |
|
) |
|
dist_token = self.dist_token.expand(B, -1, -1) |
|
x = torch.cat((cls_tokens, dist_token, x), dim=1) |
|
else: |
|
if self.no_embed_class: |
|
x = x + pos_embed |
|
cls_tokens = self.cls_token.expand( |
|
B, -1, -1 |
|
) |
|
x = torch.cat((cls_tokens, x), dim=1) |
|
|
|
if not self.no_embed_class: |
|
x = x + pos_embed |
|
x = self.pos_drop(x) |
|
|
|
for blk in self.blocks: |
|
x = blk(x) |
|
|
|
x = self.norm(x) |
|
|
|
return x |
|
|
|
|
|
def _make_vit_b16_backbone( |
|
model, |
|
features=[96, 192, 384, 768], |
|
size=[384, 384], |
|
hooks=[2, 5, 8, 11], |
|
vit_features=768, |
|
use_readout="ignore", |
|
start_index=1, |
|
start_index_readout=1, |
|
): |
|
pretrained = make_backbone_default(model, features, size, hooks, vit_features, use_readout, start_index, |
|
start_index_readout) |
|
|
|
|
|
|
|
pretrained.model.forward_flex = types.MethodType(forward_flex, pretrained.model) |
|
pretrained.model._resize_pos_embed = types.MethodType( |
|
_resize_pos_embed, pretrained.model |
|
) |
|
|
|
return pretrained |
|
|
|
|
|
def _make_pretrained_vitl16_384(pretrained, use_readout="ignore", hooks=None): |
|
model = timm.create_model("vit_large_patch16_384", pretrained=pretrained) |
|
|
|
hooks = [5, 11, 17, 23] if hooks == None else hooks |
|
return _make_vit_b16_backbone( |
|
model, |
|
features=[256, 512, 1024, 1024], |
|
hooks=hooks, |
|
vit_features=1024, |
|
use_readout=use_readout, |
|
) |
|
|
|
|
|
def _make_pretrained_vitb16_384(pretrained, use_readout="ignore", hooks=None): |
|
model = timm.create_model("vit_base_patch16_384", pretrained=pretrained) |
|
|
|
hooks = [2, 5, 8, 11] if hooks == None else hooks |
|
return _make_vit_b16_backbone( |
|
model, features=[96, 192, 384, 768], hooks=hooks, use_readout=use_readout |
|
) |
|
|
|
|
|
def _make_vit_b_rn50_backbone( |
|
model, |
|
features=[256, 512, 768, 768], |
|
size=[384, 384], |
|
hooks=[0, 1, 8, 11], |
|
vit_features=768, |
|
patch_size=[16, 16], |
|
number_stages=2, |
|
use_vit_only=False, |
|
use_readout="ignore", |
|
start_index=1, |
|
): |
|
pretrained = nn.Module() |
|
|
|
pretrained.model = model |
|
|
|
used_number_stages = 0 if use_vit_only else number_stages |
|
for s in range(used_number_stages): |
|
pretrained.model.patch_embed.backbone.stages[s].register_forward_hook( |
|
get_activation(str(s + 1)) |
|
) |
|
for s in range(used_number_stages, 4): |
|
pretrained.model.blocks[hooks[s]].register_forward_hook(get_activation(str(s + 1))) |
|
|
|
pretrained.activations = activations |
|
|
|
readout_oper = get_readout_oper(vit_features, features, use_readout, start_index) |
|
|
|
for s in range(used_number_stages): |
|
value = nn.Sequential(nn.Identity(), nn.Identity(), nn.Identity()) |
|
exec(f"pretrained.act_postprocess{s + 1}=value") |
|
for s in range(used_number_stages, 4): |
|
if s < number_stages: |
|
final_layer = nn.ConvTranspose2d( |
|
in_channels=features[s], |
|
out_channels=features[s], |
|
kernel_size=4 // (2 ** s), |
|
stride=4 // (2 ** s), |
|
padding=0, |
|
bias=True, |
|
dilation=1, |
|
groups=1, |
|
) |
|
elif s > number_stages: |
|
final_layer = nn.Conv2d( |
|
in_channels=features[3], |
|
out_channels=features[3], |
|
kernel_size=3, |
|
stride=2, |
|
padding=1, |
|
) |
|
else: |
|
final_layer = None |
|
|
|
layers = [ |
|
readout_oper[s], |
|
Transpose(1, 2), |
|
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])), |
|
nn.Conv2d( |
|
in_channels=vit_features, |
|
out_channels=features[s], |
|
kernel_size=1, |
|
stride=1, |
|
padding=0, |
|
), |
|
] |
|
if final_layer is not None: |
|
layers.append(final_layer) |
|
|
|
value = nn.Sequential(*layers) |
|
exec(f"pretrained.act_postprocess{s + 1}=value") |
|
|
|
pretrained.model.start_index = start_index |
|
pretrained.model.patch_size = patch_size |
|
|
|
|
|
|
|
pretrained.model.forward_flex = types.MethodType(forward_flex, pretrained.model) |
|
|
|
|
|
|
|
pretrained.model._resize_pos_embed = types.MethodType( |
|
_resize_pos_embed, pretrained.model |
|
) |
|
|
|
return pretrained |
|
|
|
|
|
def _make_pretrained_vitb_rn50_384( |
|
pretrained, use_readout="ignore", hooks=None, use_vit_only=False |
|
): |
|
model = timm.create_model("vit_base_resnet50_384", pretrained=pretrained) |
|
|
|
hooks = [0, 1, 8, 11] if hooks == None else hooks |
|
return _make_vit_b_rn50_backbone( |
|
model, |
|
features=[256, 512, 768, 768], |
|
size=[384, 384], |
|
hooks=hooks, |
|
use_vit_only=use_vit_only, |
|
use_readout=use_readout, |
|
) |
|
|