|
import cv2 |
|
import torch |
|
|
|
from midas.dpt_depth import DPTDepthModel |
|
from midas.midas_net import MidasNet |
|
from midas.midas_net_custom import MidasNet_small |
|
from midas.transforms import Resize, NormalizeImage, PrepareForNet |
|
|
|
from torchvision.transforms import Compose |
|
|
|
default_models = { |
|
"dpt_beit_large_512": "weights/dpt_beit_large_512.pt", |
|
"dpt_beit_large_384": "weights/dpt_beit_large_384.pt", |
|
"dpt_beit_base_384": "weights/dpt_beit_base_384.pt", |
|
"dpt_swin2_large_384": "weights/dpt_swin2_large_384.pt", |
|
"dpt_swin2_base_384": "weights/dpt_swin2_base_384.pt", |
|
"dpt_swin2_tiny_256": "weights/dpt_swin2_tiny_256.pt", |
|
"dpt_swin_large_384": "weights/dpt_swin_large_384.pt", |
|
"dpt_next_vit_large_384": "weights/dpt_next_vit_large_384.pt", |
|
"dpt_levit_224": "weights/dpt_levit_224.pt", |
|
"dpt_large_384": "weights/dpt_large_384.pt", |
|
"dpt_hybrid_384": "weights/dpt_hybrid_384.pt", |
|
"midas_v21_384": "weights/midas_v21_384.pt", |
|
"midas_v21_small_256": "weights/midas_v21_small_256.pt", |
|
"openvino_midas_v21_small_256": "weights/openvino_midas_v21_small_256.xml", |
|
} |
|
|
|
|
|
def load_model(device, model_path, model_type="dpt_large_384", optimize=True, height=None, square=False): |
|
"""Load the specified network. |
|
|
|
Args: |
|
device (device): the torch device used |
|
model_path (str): path to saved model |
|
model_type (str): the type of the model to be loaded |
|
optimize (bool): optimize the model to half-integer on CUDA? |
|
height (int): inference encoder image height |
|
square (bool): resize to a square resolution? |
|
|
|
Returns: |
|
The loaded network, the transform which prepares images as input to the network and the dimensions of the |
|
network input |
|
""" |
|
if "openvino" in model_type: |
|
from openvino.runtime import Core |
|
|
|
keep_aspect_ratio = not square |
|
|
|
if model_type == "dpt_beit_large_512": |
|
model = DPTDepthModel( |
|
path=model_path, |
|
backbone="beitl16_512", |
|
non_negative=True, |
|
) |
|
net_w, net_h = 512, 512 |
|
resize_mode = "minimal" |
|
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) |
|
|
|
elif model_type == "dpt_beit_large_384": |
|
model = DPTDepthModel( |
|
path=model_path, |
|
backbone="beitl16_384", |
|
non_negative=True, |
|
) |
|
net_w, net_h = 384, 384 |
|
resize_mode = "minimal" |
|
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) |
|
|
|
elif model_type == "dpt_beit_base_384": |
|
model = DPTDepthModel( |
|
path=model_path, |
|
backbone="beitb16_384", |
|
non_negative=True, |
|
) |
|
net_w, net_h = 384, 384 |
|
resize_mode = "minimal" |
|
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) |
|
|
|
elif model_type == "dpt_swin2_large_384": |
|
model = DPTDepthModel( |
|
path=model_path, |
|
backbone="swin2l24_384", |
|
non_negative=True, |
|
) |
|
net_w, net_h = 384, 384 |
|
keep_aspect_ratio = False |
|
resize_mode = "minimal" |
|
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) |
|
|
|
elif model_type == "dpt_swin2_base_384": |
|
model = DPTDepthModel( |
|
path=model_path, |
|
backbone="swin2b24_384", |
|
non_negative=True, |
|
) |
|
net_w, net_h = 384, 384 |
|
keep_aspect_ratio = False |
|
resize_mode = "minimal" |
|
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) |
|
|
|
elif model_type == "dpt_swin2_tiny_256": |
|
model = DPTDepthModel( |
|
path=model_path, |
|
backbone="swin2t16_256", |
|
non_negative=True, |
|
) |
|
net_w, net_h = 256, 256 |
|
keep_aspect_ratio = False |
|
resize_mode = "minimal" |
|
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) |
|
|
|
elif model_type == "dpt_swin_large_384": |
|
model = DPTDepthModel( |
|
path=model_path, |
|
backbone="swinl12_384", |
|
non_negative=True, |
|
) |
|
net_w, net_h = 384, 384 |
|
keep_aspect_ratio = False |
|
resize_mode = "minimal" |
|
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) |
|
|
|
elif model_type == "dpt_next_vit_large_384": |
|
model = DPTDepthModel( |
|
path=model_path, |
|
backbone="next_vit_large_6m", |
|
non_negative=True, |
|
) |
|
net_w, net_h = 384, 384 |
|
resize_mode = "minimal" |
|
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) |
|
|
|
|
|
|
|
|
|
|
|
elif model_type == "dpt_levit_224": |
|
model = DPTDepthModel( |
|
path=model_path, |
|
backbone="levit_384", |
|
non_negative=True, |
|
head_features_1=64, |
|
head_features_2=8, |
|
) |
|
net_w, net_h = 224, 224 |
|
keep_aspect_ratio = False |
|
resize_mode = "minimal" |
|
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) |
|
|
|
elif model_type == "dpt_large_384": |
|
model = DPTDepthModel( |
|
path=model_path, |
|
backbone="vitl16_384", |
|
non_negative=True, |
|
) |
|
net_w, net_h = 384, 384 |
|
resize_mode = "minimal" |
|
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) |
|
|
|
elif model_type == "dpt_hybrid_384": |
|
model = DPTDepthModel( |
|
path=model_path, |
|
backbone="vitb_rn50_384", |
|
non_negative=True, |
|
) |
|
net_w, net_h = 384, 384 |
|
resize_mode = "minimal" |
|
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) |
|
|
|
elif model_type == "midas_v21_384": |
|
model = MidasNet(model_path, non_negative=True) |
|
net_w, net_h = 384, 384 |
|
resize_mode = "upper_bound" |
|
normalization = NormalizeImage( |
|
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] |
|
) |
|
|
|
elif model_type == "midas_v21_small_256": |
|
model = MidasNet_small(model_path, features=64, backbone="efficientnet_lite3", exportable=True, |
|
non_negative=True, blocks={'expand': True}) |
|
net_w, net_h = 256, 256 |
|
resize_mode = "upper_bound" |
|
normalization = NormalizeImage( |
|
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] |
|
) |
|
|
|
elif model_type == "openvino_midas_v21_small_256": |
|
ie = Core() |
|
uncompiled_model = ie.read_model(model=model_path) |
|
model = ie.compile_model(uncompiled_model, "CPU") |
|
net_w, net_h = 256, 256 |
|
resize_mode = "upper_bound" |
|
normalization = NormalizeImage( |
|
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] |
|
) |
|
|
|
else: |
|
print(f"model_type '{model_type}' not implemented, use: --model_type large") |
|
assert False |
|
|
|
if not "openvino" in model_type: |
|
print("Model loaded, number of parameters = {:.0f}M".format(sum(p.numel() for p in model.parameters()) / 1e6)) |
|
else: |
|
print("Model loaded, optimized with OpenVINO") |
|
|
|
if "openvino" in model_type: |
|
keep_aspect_ratio = False |
|
|
|
if height is not None: |
|
net_w, net_h = height, height |
|
|
|
transform = Compose( |
|
[ |
|
Resize( |
|
net_w, |
|
net_h, |
|
resize_target=None, |
|
keep_aspect_ratio=keep_aspect_ratio, |
|
ensure_multiple_of=32, |
|
resize_method=resize_mode, |
|
image_interpolation_method=cv2.INTER_CUBIC, |
|
), |
|
normalization, |
|
PrepareForNet(), |
|
] |
|
) |
|
|
|
if not "openvino" in model_type: |
|
model.eval() |
|
|
|
if optimize and (device == torch.device("cuda")): |
|
if not "openvino" in model_type: |
|
model = model.to(memory_format=torch.channels_last) |
|
model = model.half() |
|
else: |
|
print("Error: OpenVINO models are already optimized. No optimization to half-float possible.") |
|
exit() |
|
|
|
if not "openvino" in model_type: |
|
model.to(device) |
|
|
|
return model, transform, net_w, net_h |
|
|