|
"""Compute depth maps for images in the input folder. |
|
""" |
|
import os |
|
import glob |
|
import utils |
|
import cv2 |
|
import sys |
|
import numpy as np |
|
import argparse |
|
|
|
import onnx |
|
import onnxruntime as rt |
|
|
|
from transforms import Resize, NormalizeImage, PrepareForNet |
|
|
|
|
|
def run(input_path, output_path, model_path, model_type="large"): |
|
"""Run MonoDepthNN to compute depth maps. |
|
|
|
Args: |
|
input_path (str): path to input folder |
|
output_path (str): path to output folder |
|
model_path (str): path to saved model |
|
""" |
|
print("initialize") |
|
|
|
|
|
device = "CUDA:0" |
|
|
|
print("device: %s" % device) |
|
|
|
|
|
if model_type == "large": |
|
net_w, net_h = 384, 384 |
|
elif model_type == "small": |
|
net_w, net_h = 256, 256 |
|
else: |
|
print(f"model_type '{model_type}' not implemented, use: --model_type large") |
|
assert False |
|
|
|
|
|
print("loading model...") |
|
model = rt.InferenceSession(model_path) |
|
input_name = model.get_inputs()[0].name |
|
output_name = model.get_outputs()[0].name |
|
|
|
resize_image = Resize( |
|
net_w, |
|
net_h, |
|
resize_target=None, |
|
keep_aspect_ratio=False, |
|
ensure_multiple_of=32, |
|
resize_method="upper_bound", |
|
image_interpolation_method=cv2.INTER_CUBIC, |
|
) |
|
|
|
def compose2(f1, f2): |
|
return lambda x: f2(f1(x)) |
|
|
|
transform = compose2(resize_image, PrepareForNet()) |
|
|
|
|
|
img_names = glob.glob(os.path.join(input_path, "*")) |
|
num_images = len(img_names) |
|
|
|
|
|
os.makedirs(output_path, exist_ok=True) |
|
|
|
print("start processing") |
|
|
|
for ind, img_name in enumerate(img_names): |
|
|
|
print(" processing {} ({}/{})".format(img_name, ind + 1, num_images)) |
|
|
|
|
|
img = utils.read_image(img_name) |
|
img_input = transform({"image": img})["image"] |
|
|
|
|
|
output = model.run([output_name], {input_name: img_input.reshape(1, 3, net_h, net_w).astype(np.float32)})[0] |
|
prediction = np.array(output).reshape(net_h, net_w) |
|
prediction = cv2.resize(prediction, (img.shape[1], img.shape[0]), interpolation=cv2.INTER_CUBIC) |
|
|
|
|
|
filename = os.path.join( |
|
output_path, os.path.splitext(os.path.basename(img_name))[0] |
|
) |
|
utils.write_depth(filename, prediction, bits=2) |
|
|
|
print("finished") |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
|
|
parser.add_argument('-i', '--input_path', |
|
default='input', |
|
help='folder with input images' |
|
) |
|
|
|
parser.add_argument('-o', '--output_path', |
|
default='output', |
|
help='folder for output images' |
|
) |
|
|
|
parser.add_argument('-m', '--model_weights', |
|
default='model-f6b98070.onnx', |
|
help='path to the trained weights of model' |
|
) |
|
|
|
parser.add_argument('-t', '--model_type', |
|
default='large', |
|
help='model type: large or small' |
|
) |
|
|
|
args = parser.parse_args() |
|
|
|
|
|
run(args.input_path, args.output_path, args.model_weights, args.model_type) |
|
|