# MiDaS for ROS1 by using LibTorch in C++ ### Requirements - Ubuntu 17.10 / 18.04 / 20.04, Debian Stretch - ROS Melodic for Ubuntu (17.10 / 18.04) / Debian Stretch, ROS Noetic for Ubuntu 20.04 - C++11 - LibTorch >= 1.6 ## Quick Start with a MiDaS Example MiDaS is a neural network to compute depth from a single image. * input from `image_topic`: `sensor_msgs/Image` - `RGB8` image with any shape * output to `midas_topic`: `sensor_msgs/Image` - `TYPE_32FC1` inverse relative depth maps in range [0 - 255] with original size and channels=1 ### Install Dependecies * install ROS Melodic for Ubuntu 17.10 / 18.04: ```bash wget https://raw.githubusercontent.com/isl-org/MiDaS/master/ros/additions/install_ros_melodic_ubuntu_17_18.sh ./install_ros_melodic_ubuntu_17_18.sh ``` or Noetic for Ubuntu 20.04: ```bash wget https://raw.githubusercontent.com/isl-org/MiDaS/master/ros/additions/install_ros_noetic_ubuntu_20.sh ./install_ros_noetic_ubuntu_20.sh ``` * install LibTorch 1.7 with CUDA 11.0: On **Jetson (ARM)**: ```bash wget https://nvidia.box.com/shared/static/wa34qwrwtk9njtyarwt5nvo6imenfy26.whl -O torch-1.7.0-cp36-cp36m-linux_aarch64.whl sudo apt-get install python3-pip libopenblas-base libopenmpi-dev pip3 install Cython pip3 install numpy torch-1.7.0-cp36-cp36m-linux_aarch64.whl ``` Or compile LibTorch from source: https://github.com/pytorch/pytorch#from-source On **Linux (x86_64)**: ```bash cd ~/ wget https://download.pytorch.org/libtorch/cu110/libtorch-cxx11-abi-shared-with-deps-1.7.0%2Bcu110.zip unzip libtorch-cxx11-abi-shared-with-deps-1.7.0+cu110.zip ``` * create symlink for OpenCV: ```bash sudo ln -s /usr/include/opencv4 /usr/include/opencv ``` * download and install MiDaS: ```bash source ~/.bashrc cd ~/ mkdir catkin_ws cd catkin_ws git clone https://github.com/isl-org/MiDaS mkdir src cp -r MiDaS/ros/* src chmod +x src/additions/*.sh chmod +x src/*.sh chmod +x src/midas_cpp/scripts/*.py cp src/additions/do_catkin_make.sh ./do_catkin_make.sh ./do_catkin_make.sh ./src/additions/downloads.sh ``` ### Usage * run only `midas` node: `~/catkin_ws/src/launch_midas_cpp.sh` #### Test * Test - capture video and show result in the window: * place any `test.mp4` video file to the directory `~/catkin_ws/src/` * run `midas` node: `~/catkin_ws/src/launch_midas_cpp.sh` * run test nodes in another terminal: `cd ~/catkin_ws/src && ./run_talker_listener_test.sh` and wait 30 seconds (to use Python 2, run command `sed -i 's/python3/python2/' ~/catkin_ws/src/midas_cpp/scripts/*.py` ) ## Mobile version of MiDaS - Monocular Depth Estimation ### Accuracy * MiDaS v2 small - ResNet50 default-decoder 384x384 * MiDaS v2.1 small - EfficientNet-Lite3 small-decoder 256x256 **Zero-shot error** (the lower - the better): | Model | DIW WHDR | Eth3d AbsRel | Sintel AbsRel | Kitti δ>1.25 | NyuDepthV2 δ>1.25 | TUM δ>1.25 | |---|---|---|---|---|---|---| | MiDaS v2 small 384x384 | **0.1248** | 0.1550 | **0.3300** | **21.81** | 15.73 | 17.00 | | MiDaS v2.1 small 256x256 | 0.1344 | **0.1344** | 0.3370 | 29.27 | **13.43** | **14.53** | | Relative improvement, % | -8 % | **+13 %** | -2 % | -34 % | **+15 %** | **+15 %** | None of Train/Valid/Test subsets of datasets (DIW, Eth3d, Sintel, Kitti, NyuDepthV2, TUM) were not involved in Training or Fine Tuning. ### Inference speed (FPS) on nVidia GPU Inference speed excluding pre and post processing, batch=1, **Frames Per Second** (the higher - the better): | Model | Jetson Nano, FPS | RTX 2080Ti, FPS | |---|---|---| | MiDaS v2 small 384x384 | 1.6 | 117 | | MiDaS v2.1 small 256x256 | 8.1 | 232 | | SpeedUp, X times | **5x** | **2x** | ### Citation This repository contains code to compute depth from a single image. It accompanies our [paper](https://arxiv.org/abs/1907.01341v3): >Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-shot Cross-dataset Transfer René Ranftl, Katrin Lasinger, David Hafner, Konrad Schindler, Vladlen Koltun Please cite our paper if you use this code or any of the models: ``` @article{Ranftl2020, author = {Ren\'{e} Ranftl and Katrin Lasinger and David Hafner and Konrad Schindler and Vladlen Koltun}, title = {Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-shot Cross-dataset Transfer}, journal = {IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)}, year = {2020}, } ```