--- library_name: transformers language: - lv license: apache-2.0 base_model: AiLab-IMCS-UL/whisper-large-v3-lv-late-cv19 tags: - hf-asr-leaderboard - generated_from_trainer metrics: - wer model-index: - name: Whisper large LV - Felikss Kleins results: [] --- # Whisper large LV - Felikss Kleins This model is a fine-tuned version of [AiLab-IMCS-UL/whisper-large-v3-lv-late-cv19](https://huggingface.co/AiLab-IMCS-UL/whisper-large-v3-lv-late-cv19) on the Recorded Voice dataset. It achieves the following results on the evaluation set: - Loss: 0.1620 - Wer: 10.8617 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Use adamw_hf with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 250 - training_steps: 2500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:-------:| | 0.0032 | 36.0360 | 1000 | 0.1513 | 12.6354 | | 0.0007 | 72.0721 | 2000 | 0.1620 | 10.8617 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.4.1 - Datasets 3.1.0 - Tokenizers 0.20.3