--- license: apache-2.0 language: - en base_model: - mkurman/Qwen2.5-14B-DeepSeek-R1-1M - huihui-ai/DeepSeek-R1-Distill-Qwen-14B-abliterated-v2 library_name: mlx tags: - merge - text-generation-inference - code --- # An MLX bfloat16 FP16 model, 1M context length, uncensored. ## Model Merge: DeepSeek-R1-Distill-Qwen-14B-abliterated-v2 **Description**: This model is a tie merge of "huihui-ai/DeepSeek-R1-Distill-Qwen-14B-abliterated-v2" and "mkurman/Qwen2.5-14B-DeepSeek-R1-1M". ### Recipes **Model Recipe:** ```models: - model: "huihui-ai/DeepSeek-R1-Distill-Qwen-14B-abliterated-v2" parameters: weight: 1 density: 1 merge_method: ties base_model: "mkurman/Qwen2.5-14B-DeepSeek-R1-1M" parameters: density: 1 normalize: true int8_mask: true dtype: bfloat16 ``` **Merged Model**: The model was merged using the "ties" method. ### Conversion to MLX Format The model was converted to the MLX format with brainfloat16 precision using the following command: ```bash mlx_lm.convert --hf-path FiditeNemini/Qwen2.5-14B-DeepSeek-R1-1M --mlx-path ./Unhinged-Qwen2.5-R1.bf16 --dtype bfloat16 -q --q-bits 16 ``` ### Usage Example You can use this model with the following code snippet: ```python from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("FiditeNemini/Unhinged-Qwen2.5-R1.bf16") tokenizer = AutoTokenizer.from_pretrained("FiditeNemini/Unhinged-Qwen2.5-R1.bf16") ``` ### Details - Model type: CausalLM - Context length: 4096 tokens - License: Apache 2.0 ### Keywords - DeepSeek-R1-Distill - Qwen2.5 - Abliterated - LLM - 1M context